No Arabic abstract
With the depletion of spectrum, wireless communication systems turn to exploit large antenna arrays to achieve the degree of freedom in space domain, such as millimeter wave massive multi-input multioutput (MIMO), reconfigurable intelligent surface assisted communications and cell-free massive MIMO. In these systems, how to acquire accurate channel state information (CSI) is difficult and becomes a bottleneck of the communication links. In this article, we introduce the concept of channel extrapolation that relies on a small portion of channel parameters to infer the remaining channel parameters. Since the substance of channel extrapolation is a mapping from one parameter subspace to another, we can resort to deep learning (DL), a powerful learning architecture, to approximate such mapping function. Specifically, we first analyze the requirements, conditions and challenges for channel extrapolation. Then, we present three typical extrapolations over the antenna dimension, the frequency dimension, and the physical terminal, respectively. We also illustrate their respective principles, design challenges and DL strategies. It will be seen that channel extrapolation could greatly reduce the transmission overhead and subsequently enhance the performance gains compared with the traditional strategies. In the end, we provide several potential research directions on channel extrapolation for future intelligent communications systems.
In a time-varying massive multiple-input multipleoutput (MIMO) system, the acquisition of the downlink channel state information at the base station (BS) is a very challenging task due to the prohibitively high overheads associated with downlink training and uplink feedback. In this paper, we consider the hybrid precoding structure at BS and examine the antennatime domain channel extrapolation. We design a latent ordinary differential equation (ODE)-based network under the variational auto-encoder (VAE) framework to learn the mapping function from the partial uplink channels to the full downlink ones at the BS side. Specifically, the gated recurrent unit is adopted for the encoder and the fully-connected neural network is used for the decoder. The end-to-end learning is utilized to optimize the network parameters. Simulation results show that the designed network can efficiently infer the full downlink channels from the partial uplink ones, which can significantly reduce the channel training overhead.
Unmanned aerial vehicle (UAV) wireless communications have experienced an upsurge of interest in both military and civilian applications, due to its high mobility, low cost, on-demand deployment, and inherent line-of-sight (LoS) air-to-ground channels. However, these benefits also make UAV wireless communication systems vulnerable to malicious eavesdropping attacks. In this article, we aim to examine the physical layer security issues in UAV systems. In particular, passive and active eavesdroppings are two primary attacks in UAV systems. We provide an overview on emerging techniques, such as trajectory design, resource allocation, and cooperative UAVs, to fight against both types of eavesdroppings in UAV wireless communication systems. Moreover, the applications of non-orthogonal multiple access, multiple-input and multiple-output, and millimeter wave in UAV systems are also proposed to improve the system spectral efficiency and to guarantee security simultaneously. Finally, we discuss some potential research directions and challenges in terms of physical layer security in UAV systems.
In this paper, user detection performance of a grant-free uplink transmission in a large scale antenna system is analyzed, in which a general grant-free multiple access is considered as the system model and Zadoff-Chu sequence is used for the uplink pilot. The false alarm probabilities of various user detection schemes under the target detection probabilities are evaluated.
In this paper, we propose a frequency-time division network (FreqTimeNet) to improve the performance of deep learning (DL) based OFDM channel estimation. This FreqTimeNet is designed based on the orthogonality between the frequency domain and the time domain. In FreqTimeNet, the input is processed by parallel frequency blocks and parallel time blocks in sequential. Introducing the attention mechanism to use the SNR information, an attention based FreqTimeNet (AttenFreqTimeNet) is proposed. Using 3rd Generation Partnership Project (3GPP) channel models, the mean square error (MSE) performance of FreqTimeNet and AttenFreqTimeNet under different scenarios is evaluated. A method for constructing mixed training data is proposed, which could address the generalization problem in DL. It is observed that AttenFreqTimeNet outperforms FreqTimeNet, and FreqTimeNet outperforms other DL networks, with acceptable complexity.
Media-based modulation (MBM), exploiting rich scattering properties of transmission environments via different radiation patterns of a single reconfigurable antenna (RA), has brought new insights into future communication systems. In this study, considering this innovative transmission principle, we introduce the realistic, two-dimensional (2D), and open-source SimMBM channel simulator to support various applications of MBM systems at sub-6 GHz frequency band in different environments.