No Arabic abstract
Nitrogen-vacancy (NV) center in diamond is an ideal candidate for quantum sensors because of its excellent optical and coherence property. However, previous studies are usually conducted at low or room temperature. The lack of full knowledge of coherence properties of the NV center at high temperature limits NVs further applications. Here, we systematically explore the coherence properties of the NV center ensemble at temperatures from 300 K to 600 K. Coherence time $T_2$ decreases rapidly from $184 mu s$ at 300 K to $30 mu s$ at 600 K, which is attributed to the interaction with paramagnetic impurities. Single-quantum and double-quantum relaxation rates show an obvious temperature-dependent behavior as well, and both of them are dominated by the two phonon Raman process. While the inhomogeneous dephasing time $T_2^*$ and thermal echo decoherence time $T_{TE}$ remain almost unchanged as temperature rises. Since $T_{TE}$ changed slightly as temperature rises, a thermal-echo-based thermometer is demonstrated to have a sensitivity of $41 mK/sqrt{Hz}$ at 450 K. These findings will help to pave the way toward NV-based high-temperature sensing, as well as to have a more comprehensive understanding of the origin of decoherence in the solid-state qubit.
We investigated the depth dependence of coherence times of nitrogen-vacancy (NV) centers through precisely depth controlling by a moderately oxidative at 580{deg}C in air. By successive nanoscale etching, NV centers could be brought close to the diamond surface step by step, which enable us to trace the evolution of the number of NV centers remained in the chip and to study the depth dependence of coherence times of NV centers with the diamond etching. Our results showed that the coherence times of NV centers declined rapidly with the depth reduction in their last about 22 nm before they finally disappeared, revealing a critical depth for the influence of rapid fluctuating surface spin bath. By monitoring the coherence time variation with depth, we could make a shallow NV center with long coherence time for detecting external spins with high sensitivity.
Stimulated emission is the process fundamental to laser operation, thereby producing coherent photon output. Despite negatively-charged nitrogen-vacancy (NV$^-$) centres being discussed as a potential laser medium since the 1980s, there have been no definitive observations of stimulated emission from ensembles of NV$^-$ to date. Reasons for this lack of demonstration include the short excited state lifetime and the occurrence of photo-ionisation to the neutral charge state by light around the zero-phonon line. Here we show both theoretical and experimental evidence for stimulated emission from NV$^-$ states using light in the phonon-sidebands. Our system uses a continuous wave pump laser at 532 nm and a pulsed stimulating laser that is swept across the phononic sidebands of the NV$^-$. Optimal stimulated emission is demonstrated in the vicinity of the three-phonon line at 700 nm. Furthermore, we show the transition from stimulated emission to photoionisation as the stimulating laser wavelength is reduced from 700nm to 620 nm. While lasing at the zero-phonon line is suppressed by ionisation, our results open the possibility of diamond lasers based on NV centres, tuneable over the phonon-sideband. This broadens the applications of NV magnetometers from single centre nanoscale sensors to a new generation of ultra-precise ensemble laser sensors, which exploit the contrast and signal amplification of a lasing system.
Solid-state spin systems including nitrogen-vacancy (NV) centers in diamond constitute an increasingly favored quantum sensing platform. However, present NV ensemble devices exhibit sensitivities orders of magnitude away from theoretical limits. The sensitivity shortfall both handicaps existing implementations and curtails the envisioned application space. This review analyzes present and proposed approaches to enhance the sensitivity of broadband ensemble-NV-diamond magnetometers. Improvements to the spin dephasing time, the readout fidelity, and the host diamond material properties are identified as the most promising avenues and are investigated extensively. Our analysis of sensitivity optimization establishes a foundation to stimulate development of new techniques for enhancing solid-state sensor performance.
Significant attention has been recently focused on the realization of high precision nano-thermometry using the spin-resonance temperature shift of the negatively charged nitrogen-vacancy (NV-) center in diamond. However, the precise physical origins of the temperature shift is yet to be understood. Here, the shifts of the centers optical and spin resonances are observed and a model is developed that identifies the origin of each shift to be a combination of thermal expansion and electron-phonon interactions. Our results provide new insight into the centers vibronic properties and reveal implications for NV- thermometry.
The negatively-charged nitrogen-vacancy (NV) center in diamond is at the frontier of quantum nano-metrology and bio-sensing. Recent attention has focused on the application of high-sensitivity thermometry using the spin resonances of NV centers in nano-diamond to sub-cellular biological and biomedical research. Here, we report a comprehensive investigation of the thermal properties of the centers spin resonances and demonstrate an alternate all-optical NV thermometry technique that exploits the temperature dependence of the centers optical Debye-Waller factor.