No Arabic abstract
Illumination is the deliberate utilization of light to realize practical or aesthetic effects. The designers combine with the environmental considerations, energy-saving goals, and technology advances with fundamental physics to develop lighting solutions to satisfy all of our ever-changing needs. Achieving highly efficient and precise control of the energy output of light sources while maintaining compact optical structures is the ultimate goal of illumination design. To realize miniaturized and lightweight luminaires, the design process must consider the extents of light sources. However, the illumination design for extended sources is still a challenging and unsolved problem. Here, we propose a method to design ultra-performance illumination optics enabled by freeform optical surfaces. The proposed method is very general with no limitations of far-field approximation and Lambertian luminescent property. We demonstrate the feasibility and efficiency of the proposed method by designing several freeform lenses realizing accurate and highly efficient illumination control as well as ultra-compact structures.
We present a method for improving the efficiency and user experience of freeform illumination design with machine learning. By utilizing orthogonal polynomials to interface with artificial neural networks, we are able to generalize relationships between freeform surface shapes and design parameters. Then, by training the network to generalize the relationship between high-level design goals and final performance, we were able to transform what is traditionally a difficult and computationally intensive problem into a compact, user friendly form. The potential of the proposed method is demonstrated through the design of uniform square patterns from off-axis positions and rectangular patterns of tuneable aspect ratios and distances from the target.
Reflective imaging systems form an important part of photonic devices such as spectrometers, telescopes, augmented and virtual reality headsets or lithography platforms. Reflective optics provide unparalleled spectral performance and can be used to reduce overall volume and weight. So far, most reflective designs have focused on two or three reflections, while four-reflection freeform designs can deliver a higher light throughput (faster F-number) as well as a larger field-of-view (FOV). However, advanced optical design strategies for four-reflection freeform systems have been rarely reported in literature. This is due to the increased complexity in solution space but also the fact that additional mirrors hinder a cost-effective realization (manufacture, alignment, etc.). Recently, we have proposed a novel design method to directly calculate the freeform surface coefficients while merely knowing the mirror positions and tilts. Consequently, this method allows laymen with basic optical design knowledge to calculate first time right freeform imaging systems in a matter of minutes. This contrasts with most common freeform design processes, which requires considerable experience, intuition or guesswork. Firstly, we demonstrate the effectiveness of the proposed method for a four-mirror high-throughput telescope with 250mm-focal-length, F/2.5 and a wide rectangular FOV of 8.5{deg} x 25.5{deg}. In a subsequent step, we propose an effective three-mirror but four-reflection imaging system, which consists of two freeform mirrors and one double-reflection spherical mirror. Compared with common three-mirror and three-reflection imagers, our novel multi-reflection system shows unprecedented possibilities for an economic implementation while drastically reducing the overall volume.
Freeform optics aims to expand the toolkit of optical elements by allowing for more complex phase geometries beyond rotational symmetry. Complex, asymmetric curvatures are employed to enhance the performance of optical components while minimizing their weight and size. Unfortunately, these asymmetric forms are often difficult to manufacture at the nanoscale with current technologies. Metasurfaces are planar sub-wavelength structures that can control the phase, amplitude, and polarization of incident light, and can thereby mimic complex geometric curvatures on a flat, wavelength-scale thick surface. We present a methodology for designing analogues of freeform optics using a low contrast dielectric metasurface platform for operation at visible wavelengths. We demonstrate a cubic phase plate with a point spread function exhibiting enhanced depth of field over 300 {mu}m along the optical axis with potential for performing metasurface-based white light imaging, and an Alvarez lens with a tunable focal length range of over 2.5 mm with 100 {mu}m of total mechanical displacement. The adaptation of freeform optics to a sub-wavelength metasurface platform allows for the ultimate miniaturization of optical components and offers a scalable route toward implementing near-arbitrary geometric curvatures in nanophotonics.
Hexagonal boron nitride (hBN)-long-known as a thermally stable ceramic-is now available as atomically smooth, single-crystalline flakes, revolutionizing its use in optoelectronics. For nanophotonics, these flakes offer strong nonlinearities, hyperbolic dispersion, and single-photon emission, providing unique properties for optical and quantum-optical applications. For nanoelectronics, their pristine surfaces, chemical stability, and wide bandgap have made them the key substrate, encapsulant, and gate dielectric for two-dimensional electronic devices. However, while exploring these advantages, researchers have been restricted to flat flakes or those patterned with basic slits and holes, severely limiting advanced architectures. If freely varying flake profiles were possible, the hBN structure would present a powerful design parameter to further manipulate the flow of photons, electrons, and excitons in next-generation devices. Here, we demonstrate freeform nanostructuring of hBN by combining thermal scanning-probe lithography and reactive-ion etching to shape flakes with surprising fidelity. We leverage sub-nanometer height control and high spatial resolution to produce previously unattainable flake structures for a broad range of optoelectronic applications. For photonics, we fabricate microelements and show the straightforward transfer and integration of such elements by placing a spherical hBN microlens between two planar mirrors to obtain a stable, high-quality optical microcavity. We then decrease the patterning length scale to introduce Fourier surfaces for electrons, creating sophisticated, high-resolution landscapes in hBN, offering new possibilities for strain and band-structure engineering. These capabilities can advance the discovery and exploitation of emerging phenomena in hyperbolic metamaterials, polaritonics, twistronics, quantum materials, and 2D optoelectronic devices.
We propose and experimentally demonstrate temporally low-coherent optical diffraction tomography (ODT) based on angle-scanning Mach-Zehnder interferometry. Using a digital micromirror device based on diffractive tilting, we successfully maintain full-field interference of incoherent light during every scan sequence. The ODT reconstruction principles for temporally incoherent illuminations are thoroughly reviewed and developed. Several limitations of incoherent illumination are also discussed, such as the nondispersive assumption, optical sectioning capacity, and illumination angle limitation. Using the proposed setup and reconstruction algorithms, we successfully demonstrate low-coherent ODT imaging of microspheres, human red blood cells, and eukaryotic cells.