No Arabic abstract
We extract the imaginary part of the heavy-quark potential using classical-statistical simulations of real-time Yang-Mills dynamics in classical thermal equilibrium. The $r$-dependence of the imaginary part of the potential is extracted by measuring the temporal decay of Wilson loops of spatial length $r$. We compare our results to continuum expressions obtained using hard thermal loop theory and to semi-analytic lattice perturbation theory calculations using the hard classical loop formalism. We find that, when plotted as a function of $m_D r$, where $m_D$ is the hard classical loop Debye mass, the imaginary part of the heavy-quark potential is independent of the lattice spacing at small $r$ and agrees well with the semi-analytic hard classical loop result. For large quark-antiquark separations, we quantify the magnitude of the non-perturbative long-range corrections to the imaginary part of the heavy-quark potential. We present our results for a wide range of temperatures, lattice spacings, and lattice volumes. Based on our results, we extract an estimate of the heavy-quark transport coefficient $kappa$ from the short-distance behavior of the classical potential and compare our result with $kappa$ obtained using hard thermal loops and hard classical loops. This work sets the stage for extracting the imaginary part of the heavy-quark potential in an expanding non-equilibrium Yang Mills plasma.
We first extend our formulation for the calculation of $pi$- and $sigma$-meson screening masses to the case of finite chemical potential $mu$. We then consider the imaginary-$mu$ approach, which is an extrapolation method from imaginary chemical potential ($mu=i mu_{rm I}$) to real one ($mu=mu_{rm R}$). The feasibility of the method is discussed based on the entanglement Polyakov-loop extended Nambu--Jona-Lasinio (EPNJL) model in 2-flavor system. As an example, we investigate how reliable the imaginary-$mu$ approach is for $pi$- and $sigma$-meson screening masses, comparing screening masses at $mu_{rm R}$ in the method with those calculated directly at $mu_{rm R}$. We finally propose the new extrapolation method and confirm its efficiency.
We draw the three-flavor phase diagram as a function of light- and strange-quark masses for both zero and imaginary quark-number chemical potential, using the Polyakov-loop extended Nambu-Jona-Lasinio model with an effective four-quark vertex depending on the Polyakov loop. The model prediction is qualitatively consistent with 2+1 flavor lattice QCD prediction at zero chemical potential and with degenerate three-flavor lattice QCD prediction at imaginary chemical potential.
Recently, a finite-temperature real-time static potential has been introduced via a Schrodinger-type equation satisfied by a certain heavy quarkonium Greens function. Furthermore, it has been pointed out that it possesses an imaginary part, which induces a finite width for the tip of the quarkonium peak in the thermal dilepton production rate. The imaginary part originates from Landau-damping of low-frequency gauge fields, which are essentially classical due to their high occupation number. Here we show how the imaginary part can be measured with classical lattice gauge theory simulations, accounting non-perturbatively for the infrared sector of finite-temperature field theory. We demonstrate that a non-vanishing imaginary part indeed exists non-perturbatively; and that its value agrees semi-quantitatively with that predicted by Hard Loop resummed perturbation theory.
The spatial distribution of the stress tensor around the quark--anti-quark ($Qbar{Q}$) pair in SU(3) lattice gauge theory is studied. The Yang-Mills gradient flow plays a crucial role to make the stress tensor well-defined and derivable from the numerical simulations on the lattice. The resultant stress tensor with a decomposition into local principal axes shows, for the first time, the detailed structure of the flux tube along the longitudinal and transverse directions in a gauge invariant manner. The linear confining behavior of the $Qbar{Q}$ potential at long distances is derived directly from the integral of the local stress tensor.
The problem of calculating real-time correlation functions is formulated in terms of an imaginary-time partial differential equation. The latter is solved analytically for the perturbed harmonic oscillator and compared with the known exact result. The first order approximation for the short-time propagator is derived and used for numerical solution of the equation by a Monte Carlo integration. In general, the method provides a reformulation of the dynamic sign problem, and is applicable to any two-time correlation function including single-particle, density-density, current-current, spin-spin, and others. The prospects of extending the technique onto multi-dimensional problems are discussed.