No Arabic abstract
Young stars and planets both grow by accreting material from the proto-stellar disks. Planetary structure and formation models assume a common origin of the building blocks, yet, thus far, there is no direct conclusive observational evidence correlating the composition of rocky planets to their host stars. Here we present evidence of a chemical link between rocky planets and their host stars. The iron-mass fraction of the most precisely characterized rocky planets is compared to that of their building blocks, as inferred from the atmospheric composition of their host stars. We find a clear and statistically significant correlation between the two. We also find that this correlation is not one-to-one, owing to the disk-chemistry and planet formation processes. Therefore rocky planet composition depends on the chemical composition of the proto-planetary disk and contains signatures about planet formation processes.
In order to understand the exoplanet, you need to understand its parent star. Astrophysical parameters of extrasolar planets are directly and indirectly dependent on the properties of their respective host stars. These host stars are very frequently the only visible component in the systems. This book describes our work in the field of characterization of exoplanet host stars using interferometry to determine angular diameters, trigonometric parallax to determine physical radii, and SED fitting to determine effective temperatures and luminosities. The interferometry data are based on our decade-long survey using the CHARA Array. We describe our methods and give an update on the status of the field, including a table with the astrophysical properties of all stars with high-precision interferometric diameters out to 150 pc (status Nov 2016). In addition, we elaborate in more detail on a number of particularly significant or important exoplanet systems, particularly with respect to (1) insights gained from transiting exoplanets, (2) the determination of system habitable zones, and (3) the discrepancy between directly determined and model-based stellar radii. Finally, we discuss current and future work including the calibration of semi-empirical methods based on interferometric data.
We present occurrence rates for rocky planets in the habitable zones (HZ) of main-sequence dwarf stars based on the Kepler DR25 planet candidate catalog and Gaia-based stellar properties. We provide the first analysis in terms of star-dependent instellation flux, which allows us to track HZ planets. We define $eta_oplus$ as the HZ occurrence of planets with radius between 0.5 and 1.5 $R_oplus$ orbiting stars with effective temperatures between 4800 K and 6300 K. We find that $eta_oplus$ for the conservative HZ is between $0.37^{+0.48}_{-0.21}$ (errors reflect 68% credible intervals) and $0.60^{+0.90}_{-0.36}$ planets per star, while the optimistic HZ occurrence is between $0.58^{+0.73}_{-0.33}$ and $0.88^{+1.28}_{-0.51}$ planets per star. These bounds reflect two extreme assumptions about the extrapolation of completeness beyond orbital periods where DR25 completeness data are available. The large uncertainties are due to the small number of detected small HZ planets. We find similar occurrence rates using both a Poisson likelihood Bayesian analysis and Approximate Bayesian Computation. Our results are corrected for catalog completeness and reliability. Both completeness and the planet occurrence rate are dependent on stellar effective temperature. We also present occurrence rates for various stellar populations and planet size ranges. We estimate with $95%$ confidence that, on average, the nearest HZ planet around G and K dwarfs is about 6 pc away, and there are about 4 HZ rocky planets around G and K dwarfs within 10 pc of the Sun.
The interaction between the magnetic fields of late-type stars and their close-by planets may produce stellar flares as observed in active binary systems. However, in spite of several claims, conclusive evidence is still lacking. We estimate the magnetic energy available in the interaction using analytical models to provide an upper bound to the expected flare energy. We investigate three different mechanisms leading to magnetic energy release. The first two can release an energy up to $(0.2-1.2) B^{2}_{0} R^{3}/mu$, where $B_{0}$ is the surface field of the star, $R$ its radius, and $mu$ the magnetic permeability of the plasma. They operate in young active stars whose coronae have closed magnetic field lines up to the distance of their close-by planets that can trigger the energy release. The third mechanism operates in weakly or moderately active stars having a coronal field with predominantly open field lines at the distance of their planets. The released energy is of the order of $(0.002-0.1) B^{2}_{0} R^{3}/mu$ and depends on the ratio of the planetary to the stellar fields, thus allowing an indirect measurement of the former when the latter is known. We compute the released energy for different separations of the planet and different stellar parameters finding the conditions for the operation of the proposed mechanisms. An application to eight selected systems is presented. The computed energies and dissipation timescales are in agreement with flare observations in the eccentric system HD 17156 and in the circular systems HD 189733 and HD 179949. This kind of star-planet interaction can be unambiguously identified by the higher flaring frequency expected close to periastron in eccentric systems.
We report the detection of eighteen Jovian planets discovered as part of our Doppler survey of subgiant stars at Keck Observatory, with follow-up Doppler and photometric observations made at McDonald and Fairborn Observatories, respectively. The host stars have masses 0.927 < Mstar /Msun < 1.95, radii 2.5 < Rstar/Rsun < 8.7, and metallicities -0.46 < [Fe/H] < +0.30. The planets have minimum masses 0.9 MJup < MP sin i <3 MJup and semima jor axes a > 0.76 AU. These detections represent a 50% increase in the number of planets known to orbit stars more massive than 1.5 Msun and provide valuable additional information about the properties of planets around stars more massive thantheSun.
Exoplanetary science has reached a historic moment. The James Webb Space Telescope will be capable of probing the atmospheres of rocky planets, and perhaps even search for biologically produced gases. However this is contingent on identifying suitable targets before the end of the mission. A race therefore, is on, to find transiting planets with the most favorable properties, in time for the launch. Here, we describe a realistic opportunity to discover extremely favorable targets - rocky planets transiting nearby brown dwarfs - using the Spitzer Space Telescope as a survey instrument. Harnessing the continuous time coverage and the exquisite precision of Spitzer in a 5,400 hour campaign monitoring nearby brown dwarfs, we will detect a handful of planetary systems with planets as small as Mars. The survey we envision is a logical extension of the immense progress that has been realized in the field of exoplanets and a natural outcome of the exploration of the solar neighborhood to map where the nearest habitable rocky planets are located (as advocated by the 2010 Decadal Survey). Our program represents an essential step towards the atmospheric characterization of terrestrial planets and carries the compelling promise of studying the concept of habitability beyond Earth-like conditions. In addition, our photometric monitoring will provide invaluable observations of a large sample of nearby brown dwarfs situated close to the M/L transition. This is why, we also advocate an immediate public release of the survey data, to guarantee rapid progress on the planet search and provide a treasure trove of data for brown dwarf science.