Do you want to publish a course? Click here

Theoretical Understandings of Product Embedding for E-commerce Machine Learning

217   0   0.0 ( 0 )
 Added by Da Xu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Product embeddings have been heavily investigated in the past few years, serving as the cornerstone for a broad range of machine learning applications in e-commerce. Despite the empirical success of product embeddings, little is known on how and why they work from the theoretical standpoint. Analogous results from the natural language processing (NLP) often rely on domain-specific properties that are not transferable to the e-commerce setting, and the downstream tasks often focus on different aspects of the embeddings. We take an e-commerce-oriented view of the product embeddings and reveal a complete theoretical view from both the representation learning and the learning theory perspective. We prove that product embeddings trained by the widely-adopted skip-gram negative sampling algorithm and its variants are sufficient dimension reduction regarding a critical product relatedness measure. The generalization performance in the downstream machine learning task is controlled by the alignment between the embeddings and the product relatedness measure. Following the theoretical discoveries, we conduct exploratory experiments that supports our theoretical insights for the product embeddings.



rate research

Read More

In this paper, we propose a new product knowledge graph (PKG) embedding approach for learning the intrinsic product relations as product knowledge for e-commerce. We define the key entities and summarize the pivotal product relations that are critical for general e-commerce applications including marketing, advertisement, search ranking and recommendation. We first provide a comprehensive comparison between PKG and ordinary knowledge graph (KG) and then illustrate why KG embedding methods are not suitable for PKG learning. We construct a self-attention-enhanced distributed representation learning model for learning PKG embeddings from raw customer activity data in an end-to-end fashion. We design an effective multi-task learning schema to fully leverage the multi-modal e-commerce data. The Poincare embedding is also employed to handle complex entity structures. We use a real-world dataset from grocery.walmart.com to evaluate the performances on knowledge completion, search ranking and recommendation. The proposed approach compares favourably to baselines in knowledge completion and downstream tasks.
Showing items that do not match search query intent degrades customer experience in e-commerce. These mismatches result from counterfactual biases of the ranking algorithms toward noisy behavioral signals such as clicks and purchases in the search logs. Mitigating the problem requires a large labeled dataset, which is expensive and time-consuming to obtain. In this paper, we develop a deep, end-to-end model that learns to effectively classify mismatches and to generate hard mismatched examples to improve the classifier. We train the model end-to-end by introducing a latent variable into the cross-entropy loss that alternates between using the real and generated samples. This not only makes the classifier more robust but also boosts the overall ranking performance. Our model achieves a relative gain compared to baselines by over 26% in F-score, and over 17% in Area Under PR curve. On live search traffic, our model gains significant improvement in multiple countries.
The slate re-ranking problem considers the mutual influences between items to improve user satisfaction in e-commerce, compared with the point-wise ranking. Previous works either directly rank items by an end to end model, or rank items by a score function that trades-off the point-wise score and the diversity between items. However, there are two main existing challenges that are not well studied: (1) the evaluation of the slate is hard due to the complex mutual influences between items of one slate; (2) even given the optimal evaluation, searching the optimal slate is challenging as the action space is exponentially large. In this paper, we present a novel Generator and Critic slate re-ranking approach, where the Critic evaluates the slate and the Generator ranks the items by the reinforcement learning approach. We propose a Full Slate Critic (FSC) model that considers the real impressed items and avoids the impressed bias of existing models. For the Generator, to tackle the problem of large action space, we propose a new exploration reinforcement learning algorithm, called PPO-Exploration. Experimental results show that the FSC model significantly outperforms the state of the art slate evaluation methods, and the PPO-Exploration algorithm outperforms the existing reinforcement learning methods substantially. The Generator and Critic approach improves both the slate efficiency(4% gmv and 5% number of orders) and diversity in live experiments on one of the largest e-commerce websites in the world.
Product summarization aims to automatically generate product descriptions, which is of great commercial potential. Considering the customer preferences on different product aspects, it would benefit from generating aspect-oriented customized summaries. However, conventional systems typically focus on providing general product summaries, which may miss the opportunity to match products with customer interests. To address the problem, we propose CUSTOM, aspect-oriented product summarization for e-commerce, which generates diverse and controllable summaries towards different product aspects. To support the study of CUSTOM and further this line of research, we construct two Chinese datasets, i.e., SMARTPHONE and COMPUTER, including 76,279 / 49,280 short summaries for 12,118 / 11,497 real-world commercial products, respectively. Furthermore, we introduce EXT, an extraction-enhanced generation framework for CUSTOM, where two famous sequence-to-sequence models are implemented in this paper. We conduct extensive experiments on the two proposed datasets for CUSTOM and show results of two famous baseline models and EXT, which indicates that EXT can generate diverse, high-quality, and consistent summaries.
Most e-commerce product feeds provide blended results of advertised products and recommended products to consumers. The underlying advertising and recommendation platforms share similar if not exactly the same set of candidate products. Consumers behaviors on the advertised results constitute part of the recommendation models training data and therefore can influence the recommended results. We refer to this process as Leverage. Considering this mechanism, we propose a novel perspective that advertisers can strategically bid through the advertising platform to optimize their recommended organic traffic. By analyzing the real-world data, we first explain the principles of Leverage mechanism, i.e., the dynamic models of Leverage. Then we introduce a novel Leverage optimization problem and formulate it with a Markov Decision Process. To deal with the sample complexity challenge in model-free reinforcement learning, we propose a novel Hybrid Training Leverage Bidding (HTLB) algorithm which combines the real-world samples and the emulator-generated samples to boost the learning speed and stability. Our offline experiments as well as the results from the online deployment demonstrate the superior performance of our approach.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا