Do you want to publish a course? Click here

STEP: Segmenting and Tracking Every Pixel

184   0   0.0 ( 0 )
 Added by Mark Weber
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, we tackle video panoptic segmentation, a task that requires assigning semantic classes and track identities to all pixels in a video. To study this important problem in a setting that requires a continuous interpretation of sensory data, we present a new benchmark: Segmenting and Tracking Every Pixel (STEP), encompassing two datasets, KITTI-STEP, and MOTChallenge-STEP together with a new evaluation metric. Our work is the first that targets this task in a real-world setting that requires dense interpretation in both spatial and temporal domains. As the ground-truth for this task is difficult and expensive to obtain, existing datasets are either constructed synthetically or only sparsely annotated within short video clips. By contrast, our datasets contain long video sequences, providing challenging examples and a test-bed for studying long-term pixel-precise segmentation and tracking. For measuring the performance, we propose a novel evaluation metric Segmentation and Tracking Quality (STQ) that fairly balances semantic and tracking aspects of this task and is suitable for evaluating sequences of arbitrary length. We will make our datasets, metric, and baselines publicly available.



rate research

Read More

High storage and computational costs obstruct deep neural networks to be deployed on resource-constrained devices. Knowledge distillation aims to train a compact student network by transferring knowledge from a larger pre-trained teacher model. However, most existing methods on knowledge distillation ignore the valuable information among training process associated with training results. In this paper, we provide a new Collaborative Teaching Knowledge Distillation (CTKD) strategy which employs two special teachers. Specifically, one teacher trained from scratch (i.e., scratch teacher) assists the student step by step using its temporary outputs. It forces the student to approach the optimal path towards the final logits with high accuracy. The other pre-trained teacher (i.e., expert teacher) guides the student to focus on a critical region which is more useful for the task. The combination of the knowledge from two special teachers can significantly improve the performance of the student network in knowledge distillation. The results of experiments on CIFAR-10, CIFAR-100, SVHN and Tiny ImageNet datasets verify that the proposed knowledge distillation method is efficient and achieves state-of-the-art performance.
Learning to estimate 3D geometry in a single frame and optical flow from consecutive frames by watching unlabeled videos via deep convolutional network has made significant progress recently. Current state-of-the-art (SoTA) methods treat the two tasks independently. One typical assumption of the existing depth estimation methods is that the scenes contain no independent moving objects. while object moving could be easily modeled using optical flow. In this paper, we propose to address the two tasks as a whole, i.e. to jointly understand per-pixel 3D geometry and motion. This eliminates the need of static scene assumption and enforces the inherent geometrical consistency during the learning process, yielding significantly improved results for both tasks. We call our method as Every Pixel Counts++ or EPC++. Specifically, during training, given two consecutive frames from a video, we adopt three parallel networks to predict the camera motion (MotionNet), dense depth map (DepthNet), and per-pixel optical flow between two frames (OptFlowNet) respectively. The three types of information are fed into a holistic 3D motion parser (HMP), and per-pixel 3D motion of both rigid background and moving objects are disentangled and recovered. Comprehensive experiments were conducted on datasets with different scenes, including driving scenario (KITTI 2012 and KITTI 2015 datasets), mixed outdoor/indoor scenes (Make3D) and synthetic animation (MPI Sintel dataset). Performance on the five tasks of depth estimation, optical flow estimation, odometry, moving object segmentation and scene flow estimation shows that our approach outperforms other SoTA methods. Code will be available at: https://github.com/chenxuluo/EPC.
Microcalcifications are small deposits of calcium that appear in mammograms as bright white specks on the soft tissue background of the breast. Microcalcifications may be a unique indication for Ductal Carcinoma in Situ breast cancer, and therefore their accurate detection is crucial for diagnosis and screening. Manual detection of these tiny calcium residues in mammograms is both time-consuming and error-prone, even for expert radiologists, since these microcalcifications are small and can be easily missed. Existing computerized algorithms for detecting and segmenting microcalcifications tend to suffer from a high false-positive rate, hindering their widespread use. In this paper, we propose an accurate calcification segmentation method using deep learning. We specifically address the challenge of keeping the false positive rate low by suggesting a strategy for focusing the hard pixels in the training phase. Furthermore, our accurate segmentation enables extracting meaningful statistics on clusters of microcalcifications.
Detecting and segmenting individual objects, regardless of their category, is crucial for many applications such as action detection or robotic interaction. While this problem has been well-studied under the classic formulation of spatio-temporal grouping, state-of-the-art approaches do not make use of learning-based methods. To bridge this gap, we propose a simple learning-based approach for spatio-temporal grouping. Our approach leverages motion cues from optical flow as a bottom-up signal for separating objects from each other. Motion cues are then combined with appearance cues that provide a generic objectness prior for capturing the full extent of objects. We show that our approach outperforms all prior work on the benchmark FBMS dataset. One potential worry with learning-based methods is that they might overfit to the particular type of objects that they have been trained on. To address this concern, we propose two new benchmarks for generic, moving object detection, and show that our model matches top-down methods on common categories, while significantly out-performing both top-down and bottom-up methods on never-before-seen categories.
412 - Ruohao Guo , Dantong Niu , Liao Qu 2021
Most recent transformer-based models show impressive performance on vision tasks, even better than Convolution Neural Networks (CNN). In this work, we present a novel, flexible, and effective transformer-based model for high-quality instance segmentation. The proposed method, Segmenting Objects with TRansformers (SOTR), simplifies the segmentation pipeline, building on an alternative CNN backbone appended with two parallel subtasks: (1) predicting per-instance category via transformer and (2) dynamically generating segmentation mask with the multi-level upsampling module. SOTR can effectively extract lower-level feature representations and capture long-range context dependencies by Feature Pyramid Network (FPN) and twin transformer, respectively. Meanwhile, compared with the original transformer, the proposed twin transformer is time- and resource-efficient since only a row and a column attention are involved to encode pixels. Moreover, SOTR is easy to be incorporated with various CNN backbones and transformer model variants to make considerable improvements for the segmentation accuracy and training convergence. Extensive experiments show that our SOTR performs well on the MS COCO dataset and surpasses state-of-the-art instance segmentation approaches. We hope our simple but strong framework could serve as a preferment baseline for instance-level recognition. Our code is available at https://github.com/easton-cau/SOTR.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا