Do you want to publish a course? Click here

Towers on the Peaks of Eternal Light: Quantifying the Available Solar Power

78   0   0.0 ( 0 )
 Added by Martin Elvis
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Peaks of Eternal Light (PELs), that are largely unshaded regions mostly at the lunar south pole, have been suggested as a source of solar power for mining the water and other volatiles in the nearby permanently dark regions. As mining is a power-intensive activity, it is interesting to estimate the maximum solar power that could be generated at the PELs. Here we use average percentage illumination maps for a range of heights above the local topography from 2 m to 2 km to determine the total power available as a function of time of lunar day. Overshadowing of highly illuminated areas by towers placed in sunward locations (at a given time of day) limits the total power to much smaller values than the highly illuminated area would suggest. We find that for near-term realizable towers (up to 20 m), the upper limit to the time-averaged power available is ~55 MW at >70% illumination, and ~6 MW at >90% illumination. For the more distant future a maximum time-averaged power of order 21000 MW at >70% illumination could be realizable for towers up to 2 km in height, and ~5270 MW, respectively, at 90% illumination. Towers 1 km high provide about a factor 2.7 times less power. The variation with lunar time of day ranges from a factor of 1.1 to ~ 3.



rate research

Read More

The lunar South pole likely contains significant amounts of water in the permanently shadowed craters there. Extracting this water for life support at a lunar base or to make rocket fuel would take large amounts of power, of order Gigawatts. A natural place to obtain this power are the Peaks of Eternal Light, that lie a few kilometers away on the crater rims and ridges above the permanently shadowed craters. The amount of solar power that could be captured depends on how tall a tower can be built to support the photovoltaic panels. The low gravity, lack of atmosphere, and quiet seismic environment of the Moon suggests that towers could be built much taller than on Earth. Here we look at the limits to building tall concrete towers on the Moon. We choose concrete as the capital cost of transporting large masses of iron or carbon fiber to the Moon is presently so expensive that profitable operation of a power plant is unlikely. Concrete instead can be manufactured in situ from the lunar regolith. We find that, with minimum wall thicknesses (20 cm), towers up to several kilometers tall are stable. The mass of concrete needed, however, grows rapidly with height, from $sim$ 760 mt at 1 km to $sim$ 4,100 mt at 2 km to $sim 10^5$ mt at 7 km and $sim 10^6$ mt at 17 km.
The social dynamics of residential solar panel use within a theoretical population are studied using a compartmental model. In this study we consider three solar power options commonly available to consumers: the community block, leasing, and buying. In particular we are interested in studying how social influence affects the dynamics within these compartments. As a result of this research a threshold value is determined, beyond which solar panels persist in the population. In addition, as is standard in this type of study, we perform equilibrium analysis, as well as uncertainty and sensitivity analyses on the threshold value. We also perform uncertainty analysis on the population levels of each compartment. The analysis shows that social influence plays an important role in the adoption of residential solar panels.
Where does solar flare energy come from? More specifically, assuming that the ultimate source of flare energy is mechanical energy in the convection zone, how is this translated into energy dissipated or stored in the corona? This question appears to have been given relatively little thought, as attention has been focussed predominantly on mechanisms for the rapid dissipation of coronal magnetic energy by way of MHD instabilities and plasma micro instabilities. We consider three types of flare theory: the steady state photospheric dynamo model in which flare power represents coronal dissipation of currents generated simultaneously by sub-photospheric flows; the magnetic energy storage model where sub-photospheric flows again induce coronal currents but which in this case are built up over a longer period before being released suddenly; and emerging flux models, in which new magnetic flux rising to the photosphere already contains free energy, and does not require subsequent stressing by photospheric motions. We conclude that photospheric dynamos can power only very minor flares; that coronal energy storage can in principle meet the requirements of a major flare, although perhaps not the very largest flares, but that difficulties in coupling efficiently to the energy source may limit this mechanism to moderate sized flares; and that emerging magnetic flux tubes, generated in the solar interior, can carry sufficient free energy to power even the largest flares ever observed.
There is a vibrant and effective planetary science community in Canada. We do research in the areas of meteoritics, asteroid and trans-Neptunian object orbits and compositions, and space weather, and are involved in space probe missions to study planetary surfaces and interiors. For Canadian planetary scientists to deliver the highest scientific impact possible, we have several recommendations. Our top recommendation is to join LSST and gain access to the full data releases by hosting a data centre, which could be done by adding to the CADC, which is already highly involved in hosting planetary data and supporting computational modelling for orbital studies. We also support MSE, which can provide spectroscopy and thus compositional information for thousands of small bodies. We support a Canadian-led microsatellite, POEP, which will provide small body sizes by measuring occultations. We support the idea of piggybacking space weather instruments on other astronomical space probes to provide data for the space weather community. Many Canadian planetary scientists are involved in space probe missions, but through haphazard and temporary arrangements like co-appointments at US institutions, so we would like the community to support Canadian researchers to participate in these large, international missions.
We present results from a data challenge posed to the radial velocity (RV) community: namely, to quantify the Bayesian evidence for n={0,1,2,3} planets in a set of synthetically generated RV datasets containing a range of planet signals. Participating teams were provided the same likelihood function and set of priors to use in their analysis. They applied a variety of methods to estimate Z, the marginal likelihood for each n-planet model, including cross-validation, the Laplace approximation, importance sampling, and nested sampling. We found the dispersion in Z across different methods grew with increasing n-planet models: ~3 for 0-planets, ~10 for 1-planet, ~100-1000 for 2-planets, and >10,000 for 3-planets. Most internal estimates of uncertainty in Z for individual methods significantly underestimated the observed dispersion across all methods. Methods that adopted a Monte Carlo approach by comparing estimates from multiple runs yielded plausible uncertainties. Finally, two classes of numerical algorithms (those based on importance and nested samplers) arrived at similar conclusions regarding the ratio of Zs for n and (n+1)-planet models. One analytic method (the Laplace approximation) demonstrated comparable performance. We express both optimism and caution: we demonstrate that it is practical to perform rigorous Bayesian model comparison for <=3-planet models, yet robust planet discoveries require researchers to better understand the uncertainty in Z and its connections to model selection.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا