No Arabic abstract
During a psychotherapy session, the counselor typically adopts techniques which are codified along specific dimensions (e.g., displays warmth and confidence, or attempts to set up collaboration) to facilitate the evaluation of the session. Those constructs, traditionally scored by trained human raters, reflect the complex nature of psychotherapy and highly depend on the context of the interaction. Recent advances in deep contextualized language models offer an avenue for accurate in-domain linguistic representations which can lead to robust recognition and scoring of such psychotherapy-relevant behavioral constructs, and support quality assurance and supervision. In this work, a BERT-based model is proposed for automatic behavioral scoring of a specific type of psychotherapy, called Cognitive Behavioral Therapy (CBT), where prior work is limited to frequency-based language features and/or short text excerpts which do not capture the unique elements involved in a spontaneous long conversational interaction. The model is trained in a multi-task manner in order to achieve higher interpretability. BERT-based representations are further augmented with available therapy metadata, providing relevant non-linguistic context and leading to consistent performance improvements.
In recent years, we have seen deep learning and distributed representations of words and sentences make impact on a number of natural language processing tasks, such as similarity, entailment and sentiment analysis. Here we introduce a new task: understanding of mental health concepts derived from Cognitive Behavioural Therapy (CBT). We define a mental health ontology based on the CBT principles, annotate a large corpus where this phenomena is exhibited and perform understanding using deep learning and distributed representations. Our results show that the performance of deep learning models combined with word embeddings or sentence embeddings significantly outperform non-deep-learning models in this difficult task. This understanding module will be an essential component of a statistical dialogue system delivering therapy.
Cognitive Behavioral Therapy (CBT) is a goal-oriented psychotherapy for mental health concerns implemented in a conversational setting with broad empirical support for its effectiveness across a range of presenting problems and client populations. The quality of a CBT session is typically assessed by trained human raters who manually assign pre-defined session-level behavioral codes. In this paper, we develop an end-to-end pipeline that converts speech audio to diarized and transcribed text and extracts linguistic features to code the CBT sessions automatically. We investigate both word-level and utterance-level features and propose feature fusion strategies to combine them. The utterance level features include dialog act tags as well as behavioral codes drawn from another well-known talk psychotherapy called Motivational Interviewing (MI). We propose a novel method to augment the word-based features with the utterance level tags for subsequent CBT code estimation. Experiments show that our new fusion strategy outperforms all the studied features, both when used individually and when fused by direct concatenation. We also find that incorporating a sentence segmentation module can further improve the overall system given the preponderance of multi-utterance conversational turns in CBT sessions.
Automatically analyzing dialogue can help understand and guide behavior in domains such as counseling, where interactions are largely mediated by conversation. In this paper, we study modeling behavioral codes used to asses a psychotherapy treatment style called Motivational Interviewing (MI), which is effective for addressing substance abuse and related problems. Specifically, we address the problem of providing real-time guidance to therapists with a dialogue observer that (1) categorizes therapist and client MI behavioral codes and, (2) forecasts codes for upcoming utterances to help guide the conversation and potentially alert the therapist. For both tasks, we define neural network models that build upon recent successes in dialogue modeling. Our experiments demonstrate that our models can outperform several baselines for both tasks. We also report the results of a careful analysis that reveals the impact of the various network design tradeoffs for modeling therapy dialogue.
We present a method to represent input texts by contextualizing them jointly with dynamically retrieved textual encyclopedic background knowledge from multiple documents. We apply our method to reading comprehension tasks by encoding questions and passages together with background sentences about the entities they mention. We show that integrating background knowledge from text is effective for tasks focusing on factual reasoning and allows direct reuse of powerful pretrained BERT-style encoders. Moreover, knowledge integration can be further improved with suitable pretraining via a self-supervised masked language model objective over words in background-augmented input text. On TriviaQA, our approach obtains improvements of 1.6 to 3.1 F1 over comparable RoBERTa models which do not integrate background knowledge dynamically. On MRQA, a large collection of diverse QA datasets, we see consistent gains in-domain along with large improvements out-of-domain on BioASQ (2.1 to 4.2 F1), TextbookQA (1.6 to 2.0 F1), and DuoRC (1.1 to 2.0 F1).
We introduce UltraSuite, a curated repository of ultrasound and acoustic data, collected from recordings of child speech therapy sessions. This release includes three data collections, one from typically developing children and two from children with speech sound disorders. In addition, it includes a set of annotations, some manual and some automatically produced, and software tools to process, transform and visualise the data.