No Arabic abstract
Gaussian processes are often considered a gold standard in uncertainty estimation with low dimensional data, but they have difficulty scaling to high dimensional inputs. Deep Kernel Learning (DKL) was introduced as a solution to this problem: a deep feature extractor is used to transform the inputs over which a Gaussian process kernel is defined. However, DKL has been shown to provide unreliable uncertainty estimates in practice. We study why, and show that for certain feature extractors, far-away data points are mapped to the same features as those of training-set points. With this insight we propose to constrain DKLs feature extractor to approximately preserve distances through a bi-Lipschitz constraint, resulting in a feature space favorable to DKL. We obtain a model, DUE, which demonstrates uncertainty quality outperforming previous DKL and single forward pass uncertainty methods, while maintaining the speed and accuracy of softmax neural networks.
We propose a deep learning approach for discovering kernels tailored to identifying clusters over sample data. Our neural network produces sample embeddings that are motivated by--and are at least as expressive as--spectral clustering. Our training objective, based on the Hilbert Schmidt Information Criterion, can be optimized via gradient adaptations on the Stiefel manifold, leading to significant acceleration over spectral methods relying on eigendecompositions. Finally, our trained embedding can be directly applied to out-of-sample data. We show experimentally that our approach outperforms several state-of-the-art deep clustering methods, as well as traditional approaches such as $k$-means and spectral clustering over a broad array of real-life and synthetic datasets.
Recurrent neural network based solutions are increasingly being used in the analysis of longitudinal Electronic Health Record data. However, most works focus on prediction accuracy and neglect prediction uncertainty. We propose Deep Kernel Accelerated Failure Time models for the time-to-event prediction task, enabling uncertainty-awareness of the prediction by a pipeline of a recurrent neural network and a sparse Gaussian Process. Furthermore, a deep metric learning based pre-training step is adapted to enhance the proposed model. Our model shows better point estimate performance than recurrent neural network based baselines in experiments on two real-world datasets. More importantly, the predictive variance from our model can be used to quantify the uncertainty estimates of the time-to-event prediction: Our model delivers better performance when it is more confident in its prediction. Compared to related methods, such as Monte Carlo Dropout, our model offers better uncertainty estimates by leveraging an analytical solution and is more computationally efficient.
Deep neural networks are increasingly being used for the analysis of medical images. However, most works neglect the uncertainty in the models prediction. We propose an uncertainty-aware deep kernel learning model which permits the estimation of the uncertainty in the prediction by a pipeline of a Convolutional Neural Network and a sparse Gaussian Process. Furthermore, we adapt different pre-training methods to investigate their impacts on the proposed model. We apply our approach to Bone Age Prediction and Lesion Localization. In most cases, the proposed model shows better performance compared to common architectures. More importantly, our model expresses systematically higher confidence in more accurate predictions and less confidence in less accurate ones. Our model can also be used to detect challenging and controversial test samples. Compared to related methods such as Monte-Carlo Dropout, our approach derives the uncertainty information in a purely analytical fashion and is thus computationally more efficient.
In suitably initialized wide networks, small learning rates transform deep neural networks (DNNs) into neural tangent kernel (NTK) machines, whose training dynamics is well-approximated by a linear weight expansion of the network at initialization. Standard training, however, diverges from its linearization in ways that are poorly understood. We study the relationship between the training dynamics of nonlinear deep networks, the geometry of the loss landscape, and the time evolution of a data-dependent NTK. We do so through a large-scale phenomenological analysis of training, synthesizing diverse measures characterizing loss landscape geometry and NTK dynamics. In multiple neural architectures and datasets, we find these diverse measures evolve in a highly correlated manner, revealing a universal picture of the deep learning process. In this picture, deep network training exhibits a highly chaotic rapid initial transient that within 2 to 3 epochs determines the final linearly connected basin of low loss containing the end point of training. During this chaotic transient, the NTK changes rapidly, learning useful features from the training data that enables it to outperform the standard initial NTK by a factor of 3 in less than 3 to 4 epochs. After this rapid chaotic transient, the NTK changes at constant velocity, and its performance matches that of full network training in 15% to 45% of training time. Overall, our analysis reveals a striking correlation between a diverse set of metrics over training time, governed by a rapid chaotic to stable transition in the first few epochs, that together poses challenges and opportunities for the development of more accurate theories of deep learning.
It has been empirically observed that, in deep neural networks, the solutions found by stochastic gradient descent from different random initializations can be often connected by a path with low loss. Recent works have shed light on this intriguing phenomenon by assuming either the over-parameterization of the network or the dropout stability of the solutions. In this paper, we reconcile these two views and present a novel condition for ensuring the connectivity of two arbitrary points in parameter space. This condition is provably milder than dropout stability, and it provides a connection between the problem of finding low-loss paths and the memorization capacity of neural nets. This last point brings about a trade-off between the quality of features at each layer and the over-parameterization of the network. As an extreme example of this trade-off, we show that (i) if subsets of features at each layer are linearly separable, then almost no over-parameterization is needed, and (ii) under generic assumptions on the features at each layer, it suffices that the last two hidden layers have $Omega(sqrt{N})$ neurons, $N$ being the number of samples. Finally, we provide experimental evidence demonstrating that the presented condition is satisfied in practical settings even when dropout stability does not hold.