No Arabic abstract
To compute the persistent homology of a grayscale digital image one needs to build a simplicial or cubical complex from it. For cubical complexes, the two commonly used constructions (corresponding to direct and indirect digital adjacencies) can give different results for the same image. The two constructions are almost dual to each other, and we use this relationship to extend and modify the cubical complexes to become dual filtered cell complexes. We derive a general relationship between the persistent homology of two dual filtered cell complexes, and also establish how various modifications to a filtered complex change the persistence diagram. Applying these results to images, we derive a method to transform the persistence diagram computed using one type of cubical complex into a persistence diagram for the other construction. This means software for computing persistent homology from images can now be easily adapted to produce results for either of the two cubical complex constructions without additional low-level code implementation.
Persistence diagrams, combining geometry and topology for an effective shape description used in pattern recognition, have already proven to be an effective tool for shape representation with respect to a certainfiltering function. Comparing the persistence diagram of a query with those of a database allows automatic classification or retrieval, but unfortunately, the standard method for comparing persistence diagrams, the bottleneck distance, has a high computational cost. A possible algebraic solution to this problem is to switch to comparisons between the complex polynomials whose roots are the cornerpoints of the persistence diagrams. This strategy allows to reduce the computational cost in a significant way, thereby making persistent homology based applications suitable for large scale databases. The definition of new distances in the polynomial frame-work poses some interesting problems, both of theoretical and practical nature. In this paper, these questions have been addressed by considering possible transformations of the half-plane where the persistence diagrams lie onto the complex plane, and by considering a certain re-normalisation the symmetric functions associated to the polynomial roots of the resulting transformed polynomial. The encouraging numerical results, obtained in a dermatology application test, suggest that the proposed method may even improve the achievements obtained by the standard methods using persistence diagrams and the bottleneck distance.
We derive the relationship between the persistent homology barcodes of two dual filtered CW complexes. Applied to greyscale digital images, we obtain an algorithm to convert barcodes between the two different (dual) topological models of pixel connectivity.
Multidimensional persistence studies topological features of shapes by analyzing the lower level sets of vector-valued functions. The rank invariant completely determines the multidimensional analogue of persistent homology groups. We prove that multidimensional rank invariants are stable with respect to function perturbations. More precisely, we construct a distance between rank invariants such that small changes of the function imply only small changes of the rank invariant. This result can be obtained by assuming the function to be just continuous. Multidimensional stability opens the way to a stable shape comparison methodology based on multidimensional persistence.
In this paper, we study further properties and applications of weighted homology and persistent homology. We introduce the Mayer-Vietoris sequence and generalized Bockstein spectral sequence for weighted homology. For applications, we show an algorithm to construct a filtration of weighted simplicial complexes from a weighted network. We also prove a theorem that allows us to calculate the mod $p^2$ weighted persistent homology given some information on the mod $p$ weighted persistent homology.