No Arabic abstract
Research on indefinite causal structures is a rapidly evolving field that has a potential not only to make a radical revision of the classical understanding of space-time but also to achieve enhanced functionalities of quantum information processing. For example, it is known that indefinite causal structures provide exponential advantage in communication complexity when compared to causal protocols. In quantum computation, such structures can decide whether two unitary gates commute or anticommute with a single call to each gate, which is impossible with conventional (causal) quantum algorithms. A generalization of this effect to $n$ unitary gates, originally introduced in M. Araujo et al., Phys. Rev. Lett. 113, 250402 (2014) and often called Fourier promise problem (FPP), can be solved with the quantum-$n$-switch and a single call to each gate, while the best known causal algorithm so far calls $O(n^2)$ gates. In this work, we show that this advantage is smaller than expected. In fact, we present a causal algorithm that solves the only known specific FPP with $O(n log(n))$ queries and a causal algorithm that solves every FPP with $O(nsqrt{n})$ queries. Besides the interest in such algorithms on their own, our results limit the expected advantage of indefinite causal structures for these problems.
Models for quantum computation with circuit connections subject to the quantum superposition principle have been recently proposed. There, a control quantum system can coherently determine the order in which a target quantum system undergoes $N$ gate operations. This process, known as the quantum $N$-switch, is a resource for several information-processing tasks. In particular, it provides a computational advantage -- over fixed-gate-order quantum circuits -- for phase-estimation problems involving $N$ unknown unitary gates. However, the corresponding algorithm requires an experimentally unfeasible target-system dimension (super)exponential in $N$. Here, we introduce a promise problem for which the quantum $N$-switch gives an equivalent computational speed-up with target-system dimension as small as 2 regardless of $N$. We use state-of-the-art multi-core optical-fiber technology to experimentally demonstrate the quantum $N$-switch with $N=4$ gates acting on a photonic-polarization qubit. This is the first observation of a quantum superposition of more than $N=2$ temporal orders, demonstrating its usefulness for efficient phase-estimation.
Gaussian boson sampling exploits squeezed states to provide a highly efficient way to demonstrate quantum computational advantage. We perform experiments with 50 input single-mode squeezed states with high indistinguishability and squeezing parameters, which are fed into a 100-mode ultralow-loss interferometer with full connectivity and random transformation, and sampled using 100 high-efficiency single-photon detectors. The whole optical set-up is phase-locked to maintain a high coherence between the superposition of all photon number states. We observe up to 76 output photon-clicks, which yield an output state space dimension of $10^{30}$ and a sampling rate that is $10^{14}$ faster than using the state-of-the-art simulation strategy and supercomputers. The obtained samples are validated against various hypotheses including using thermal states, distinguishable photons, and uniform distribution.
Scaling up to a large number of qubits with high-precision control is essential in the demonstrations of quantum computational advantage to exponentially outpace the classical hardware and algorithmic improvements. Here, we develop a two-dimensional programmable superconducting quantum processor, textit{Zuchongzhi}, which is composed of 66 functional qubits in a tunable coupling architecture. To characterize the performance of the whole system, we perform random quantum circuits sampling for benchmarking, up to a system size of 56 qubits and 20 cycles. The computational cost of the classical simulation of this task is estimated to be 2-3 orders of magnitude higher than the previous work on 53-qubit Sycamore processor [Nature textbf{574}, 505 (2019)]. We estimate that the sampling task finished by textit{Zuchongzhi} in about 1.2 hours will take the most powerful supercomputer at least 8 years. Our work establishes an unambiguous quantum computational advantage that is infeasible for classical computation in a reasonable amount of time. The high-precision and programmable quantum computing platform opens a new door to explore novel many-body phenomena and implement complex quantum algorithms.
Developing quantum computers for real-world applications requires understanding theoretical sources of quantum advantage and applying those insights to design more powerful machines. Toward that end, we introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems. By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis (CCPHASE$(theta)$). We estimate the process fidelity for this scheme via Cycle Benchmarking of $mathcal{F}=87.1pm0.8%$, higher than reference two-qubit gate decompositions. CCPHASE$(theta)$ is anticipated to have broad experimental implications, and we report a blueprint demonstration for solving a class of binary constraint satisfaction problems whose construction is consistent with a path to quantum advantage.
We generalize quantum circuits for the Toffoli gate presented by Selinger and Jones for functionally controlled NOT gates, i.e., $X$ gates controlled by arbitrary $n$-variable Boolean functions. Our constructions target the gate set consisting of Clifford gates and single qubit rotations by arbitrary angles. Our constructions use the Walsh-Hadamard spectrum of Boolean functions and build on the work by Schuch and Siewert and Welch et al. We present quantum circuits for the case where the target qubit is in an arbitrary state as well as the special case where the target is in a known state. Additionally, we present constructions that require no auxiliary qubits and constructions that have a rotation depth of 1.