Do you want to publish a course? Click here

Programmable System on Chip for controlling an atomic physics experiment

100   0   0.0 ( 0 )
 Added by Ananya Sitaram
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Most atomic physics experiments are controlled by a digital pattern generator used to synchronize all equipment by providing triggers and clocks. Recently, the availability of well-documented open-source development tools has lifted the barriers to using programmable systems on chip (PSoC), making them a convenient and versatile tool for synthesizing digital patterns. Here, we take advantage of these advancements in the design of a versatile clock and pattern generator using a PSoC. We present our design with the intent of highlighting the new possibilities that PSoCs have to offer in terms of flexibility. We provide a robust hardware carrier and basic firmware implementation that can be expanded and modified for other uses.

rate research

Read More

Mu3e is a novel experiment searching for charged lepton flavor violation in the rare decay $mu^+ rightarrow e^+e^-e^+$. Decay vertex position, decay time and particle momenta have to be precisely measured in order to reject both accidental and physics background. A silicon pixel tracker based on $50,mu$m thin high voltage monolithic active pixel sensors (HV-MAPS) in a 1 T solenoidal magnetic field provides precise vertex and momentum information. The MuPix chip combines pixel sensor cells with integrated analog electronics and a periphery with a complete digital readout. The MuPix7 is the first HV-MAPS prototype implementing all functionalities of the final sensor including a readout state machine and high speed serialization with 1.25 Gbit/s data output, allowing for a streaming readout in parallel to the data taking. The observed efficiency of the MuPix7 chip including the full readout system is $geq99%$ in a high rate test beam.
We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical (AMO) physics experiments. The servo is capable of feedback bandwidths up to roughly 1~MHz (limited by the 320~ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of $^{27}$Al$^+$ in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser.
66 - S. Afach , D. Budker , G. DeCamp 2018
The Global Network of Optical Magnetometers to search for Exotic physics (GNOME) is a network of geographically separated, time-synchronized, optically pumped atomic magnetometers that is being used to search for correlated transient signals heralding exotic physics. The GNOME is sensitive to nuclear- and electron-spin couplings to exotic fields from astrophysical sources such as compact dark-matter objects (for example, axion stars and domain walls). Properties of the GNOME sensors such as sensitivity, bandwidth, and noise characteristics are studied in the present work, and features of the networks operation (e.g., data acquisition, format, storage, and diagnostics) are described. Characterization of the GNOME is a key prerequisite to searches for and identification of exotic physics signatures.
We report on a 2x2 array of radio-frequency atomic magnetometers in magnetic induction tomography configuration. Active detection, localization, and real-time tracking of conductive, non-magnetic targets are demonstrated in air and saline water. Penetration in different media and detection are achieved thanks to the sensitivity and tunability of the sensors, and to the active nature of magnetic induction probing. We obtained a 100% success rate for automatic detection and 93% success rate for automatic localization in air and water, up to 190 mm away from the sensors plane (100 mm underwater). We anticipate magnetic induction tomography with arrays of atomic magnetometers finding applications in civil engineering and maintenance, oil&gas industry, geological surveys, marine science, archeology, search and rescue, and security and surveillance.
Optically hyperpolarized $^{129}$Xe gas has become a powerful contrast agent in nuclear magnetic resonance (NMR) spectroscopy and imaging, with applications ranging from studies of the human lung to the targeted detection of biomolecules. Equally attractive is its potential use to enhance the sensitivity of microfluidic NMR experiments, in which small sample volumes yield poor sensitivity. Unfortunately, most $^{129}$Xe polarization systems are large and non-portable. Here we present a microfabricated chip that optically polarizes $^{129}$Xe gas. We have achieved $^{129}$Xe polarizations greater than 0.5$%$ at flow rates of several microliters per second, compatible with typical microfluidic applications. We employ in situ optical magnetometry to sensitively detect and characterize the $^{129}$Xe polarization at magnetic fields of 1 $mu$T. We construct the device using standard microfabrication techniques, which will facilitate its integration with existing microfluidic platforms. This device may enable the implementation of highly sensitive $^{129}$Xe NMR in compact, low-cost, portable devices.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا