No Arabic abstract
In remote sensing, hyperspectral (HS) and multispectral (MS) image fusion have emerged as a synthesis tool to improve the data set resolution. However, conventional image fusion methods typically degrade the performance of the land cover classification. In this paper, a feature fusion method from HS and MS images for pixel-based classification is proposed. More precisely, the proposed method first extracts spatial features from the MS image using morphological profiles. Then, the feature fusion model assumes that both the extracted morphological profiles and the HS image can be described as a feature matrix lying in different subspaces. An algorithm based on combining alternating optimization (AO) and the alternating direction method of multipliers (ADMM) is developed to solve efficiently the feature fusion problem. Finally, extensive simulations were run to evaluate the performance of the proposed feature fusion approach for two data sets. In general, the proposed approach exhibits a competitive performance compared to other feature extraction methods.
Recently, FCNs based methods have made great progress in semantic segmentation. Different with ordinary scenes, satellite image owns specific characteristics, which elements always extend to large scope and no regular or clear boundaries. Therefore, effective mid-level structure information extremely missing, precise pixel-level classification becomes tough issues. In this paper, a Dense Fusion Classmate Network (DFCNet) is proposed to adopt in land cover classification.
In this paper, a Multi-Scale Fully Convolutional Network (MSFCN) with multi-scale convolutional kernel is proposed to exploit discriminative representations from two-dimensional (2D) satellite images.
Deep learning methods have played a more and more important role in hyperspectral image classification. However, the general deep learning methods mainly take advantage of the information of sample itself or the pairwise information between samples while ignore the intrinsic data structure within the whole data. To tackle this problem, this work develops a novel deep manifold embedding method(DMEM) for hyperspectral image classification. First, each class in the image is modelled as a specific nonlinear manifold and the geodesic distance is used to measure the correlation between the samples. Then, based on the hierarchical clustering, the manifold structure of the data can be captured and each nonlinear data manifold can be divided into several sub-classes. Finally, considering the distribution of each sub-class and the correlation between different subclasses, the DMEM is constructed to preserve the estimated geodesic distances on the data manifold between the learned low dimensional features of different samples. Experiments over three real-world hyperspectral image datasets have demonstrated the effectiveness of the proposed method.
The inclusion of spatial information into spectral classifiers for fine-resolution hyperspectral imagery has led to significant improvements in terms of classification performance. The task of spectral-spatial hyperspectral image classification has remained challenging because of high intraclass spectrum variability and low interclass spectral variability. This fact has made the extraction of spatial information highly active. In this work, a novel hyperspectral image classification framework using the fusion of dual spatial information is proposed, in which the dual spatial information is built by both exploiting pre-processing feature extraction and post-processing spatial optimization. In the feature extraction stage, an adaptive texture smoothing method is proposed to construct the structural profile (SP), which makes it possible to precisely extract discriminative features from hyperspectral images. The SP extraction method is used here for the first time in the remote sensing community. Then, the extracted SP is fed into a spectral classifier. In the spatial optimization stage, a pixel-level classifier is used to obtain the class probability followed by an extended random walker-based spatial optimization technique. Finally, a decision fusion rule is utilized to fuse the class probabilities obtained by the two different stages. Experiments performed on three data sets from different scenes illustrate that the proposed method can outperform other state-of-the-art classification techniques. In addition, the proposed feature extraction method, i.e., SP, can effectively improve the discrimination between different land covers.
Subspace learning (SL) plays an important role in hyperspectral image (HSI) classification, since it can provide an effective solution to reduce the redundant information in the image pixels of HSIs. Previous works about SL aim to improve the accuracy of HSI recognition. Using a large number of labeled samples, related methods can train the parameters of the proposed solutions to obtain better representations of HSI pixels. However, the data instances may not be sufficient enough to learn a precise model for HSI classification in real applications. Moreover, it is well-known that it takes much time, labor and human expertise to label HSI images. To avoid the aforementioned problems, a novel SL method that includes the probability assumption called subspace learning with conditional random field (SLCRF) is developed. In SLCRF, first, the 3D convolutional autoencoder (3DCAE) is introduced to remove the redundant information in HSI pixels. In addition, the relationships are also constructed using the spectral-spatial information among the adjacent pixels. Then, the conditional random field (CRF) framework can be constructed and further embedded into the HSI SL procedure with the semi-supervised approach. Through the linearized alternating direction method termed LADMAP, the objective function of SLCRF is optimized using a defined iterative algorithm. The proposed method is comprehensively evaluated using the challenging public HSI datasets. We can achieve stateof-the-art performance using these HSI sets.