Do you want to publish a course? Click here

Land Cover Classification from Remote Sensing Images Based on Multi-Scale Fully Convolutional Network

84   0   0.0 ( 0 )
 Added by Li Rui
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper, a Multi-Scale Fully Convolutional Network (MSFCN) with multi-scale convolutional kernel is proposed to exploit discriminative representations from two-dimensional (2D) satellite images.



rate research

Read More

In remote sensing, hyperspectral (HS) and multispectral (MS) image fusion have emerged as a synthesis tool to improve the data set resolution. However, conventional image fusion methods typically degrade the performance of the land cover classification. In this paper, a feature fusion method from HS and MS images for pixel-based classification is proposed. More precisely, the proposed method first extracts spatial features from the MS image using morphological profiles. Then, the feature fusion model assumes that both the extracted morphological profiles and the HS image can be described as a feature matrix lying in different subspaces. An algorithm based on combining alternating optimization (AO) and the alternating direction method of multipliers (ADMM) is developed to solve efficiently the feature fusion problem. Finally, extensive simulations were run to evaluate the performance of the proposed feature fusion approach for two data sets. In general, the proposed approach exhibits a competitive performance compared to other feature extraction methods.
154 - Lingyi Liu , Yunpeng Bai , 2020
Ship detection has been an active and vital topic in the field of remote sensing for a decade, but it is still a challenging problem due to the large scale variations, the high aspect ratios, the intensive arrangement, and the background clutter disturbance. In this letter, we propose a locality-aware rotated ship detection (LARSD) framework based on a multi-scale convolutional neural network (CNN) to tackle these issues. The proposed framework applies a UNet-like multi-scale CNN to generate multi-scale feature maps with high-level semantic information in high resolution. Then, a rotated anchor-based regression is applied for directly predicting the probability, the edge distances, and the angle of ships. Finally, a locality-aware score alignment is proposed to fix the mismatch between classification results and location results caused by the independence of each subnet. Furthermore, to enlarge the datasets of ship detection, we build a new high-resolution ship detection (HRSD) dataset, where 2499 images and 9269 instances were collected from Google Earth with different resolutions. Experiments based on public dataset HRSC2016 and our HRSD dataset demonstrate that our detection method achieves state-of-the-art performance.
373 - Chao Tian , Cong Li , Jianping Shi 2019
Recently, FCNs based methods have made great progress in semantic segmentation. Different with ordinary scenes, satellite image owns specific characteristics, which elements always extend to large scope and no regular or clear boundaries. Therefore, effective mid-level structure information extremely missing, precise pixel-level classification becomes tough issues. In this paper, a Dense Fusion Classmate Network (DFCNet) is proposed to adopt in land cover classification.
As remote sensing (RS) data obtained from different sensors become available largely and openly, multimodal data processing and analysis techniques have been garnering increasing interest in the RS and geoscience community. However, due to the gap between different modalities in terms of imaging sensors, resolutions, and contents, embedding their complementary information into a consistent, compact, accurate, and discriminative representation, to a great extent, remains challenging. To this end, we propose a shared and specific feature learning (S2FL) model. S2FL is capable of decomposing multimodal RS data into modality-shared and modality-specific components, enabling the information blending of multi-modalities more effectively, particularly for heterogeneous data sources. Moreover, to better assess multimodal baselines and the newly-proposed S2FL model, three multimodal RS benchmark datasets, i.e., Houston2013 -- hyperspectral and multispectral data, Berlin -- hyperspectral and synthetic aperture radar (SAR) data, Augsburg -- hyperspectral, SAR, and digital surface model (DSM) data, are released and used for land cover classification. Extensive experiments conducted on the three datasets demonstrate the superiority and advancement of our S2FL model in the task of land cover classification in comparison with previously-proposed state-of-the-art baselines. Furthermore, the baseline codes and datasets used in this paper will be made available freely at https://github.com/danfenghong/ISPRS_S2FL.
149 - Qi Zhao , Shuchang Lyu , Yuewen Li 2020
Remote sensing (RS) scene classification is a challenging task to predict scene categories of RS images. RS images have two main characters: large intra-class variance caused by large resolution variance and confusing information from large geographic covering area. To ease the negative influence from the above two characters. We propose a Multi-granularity Multi-Level Feature Ensemble Network (MGML-FENet) to efficiently tackle RS scene classification task in this paper. Specifically, we propose Multi-granularity Multi-Level Feature Fusion Branch (MGML-FFB) to extract multi-granularity features in different levels of network by channel-separate feature generator (CS-FG). To avoid the interference from confusing information, we propose Multi-granularity Multi-Level Feature Ensemble Module (MGML-FEM) which can provide diverse predictions by full-channel feature generator (FC-FG). Compared to previous methods, our proposed networks have ability to use structure information and abundant fine-grained features. Furthermore, through ensemble learning method, our proposed MGML-FENets can obtain more convincing final predictions. Extensive classification experiments on multiple RS datasets (AID, NWPU-RESISC45, UC-Merced and VGoogle) demonstrate that our proposed networks achieve better performance than previous state-of-the-art (SOTA) networks. The visualization analysis also shows the good interpretability of MGML-FENet.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا