No Arabic abstract
Our Galaxy and the nearby Andromeda galaxy (M31) are the most massive members of the Local Group, and they seem to be a bound pair, despite the uncertainties on the relative motion of the two galaxies. A number of studies have shown that the two galaxies will likely undergo a close approach in the next 4$-$5 Gyr. We used direct $N$-body simulations to model this interaction to shed light on the future of the Milky Way - Andromeda system and for the first time explore the fate of the two supermassive black holes (SMBHs) that are located at their centers. We investigated how the uncertainties on the relative motion of the two galaxies, linked with the initial velocities and the density of the diffuse environment in which they move, affect the estimate of the time they need to merge and form ``Milkomeda. After the galaxy merger, we follow the evolution of their two SMBHs up to their close pairing and fusion. Upon the fiducial set of parameters, we find that Milky Way and Andromeda will have their closest approach in the next 4.3 Gyr and merge over a span of 10 Gyr. Although the time of the first encounter is consistent with other predictions, we find that the merger occurs later than previously estimated. We also show that the two SMBHs will spiral in the inner region of Milkomeda and coalesce in less than 16.6 Myr after the merger of the two galaxies. Finally, we evaluate the gravitational-wave emission caused by the inspiral of the SMBHs, and we discuss the detectability of similar SMBH mergers in the nearby Universe ($zleq 2$) through next-generation gravitational-wave detectors.
We present a self-consistent prediction from a large-scale cosmological simulation for the population of `wandering supermassive black holes (SMBHs) of mass greater than $10^6$ M$_{odot}$ on long-lived, kpc-scale orbits within Milky Way (MW)-mass galaxies. We extract a sample of MW-mass halos from the Romulus25 cosmological simulation (Tremmel et al. 2017), which is uniquely able to capture the orbital evolution of SMBHs during and following galaxy mergers. We predict that such halos, regardless of recent merger history or morphology, host an average of $5.1 pm 3.3$ SMBHs, including their central black hole, within 10 kpc from the galactic center and an average of $12.2 pm 8.4$ SMBHs total within their virial radius, not counting those in satellite halos. Wandering SMBHs exist within their host galaxies for several Gyrs, often accreted by their host halo in the early Universe. We find, with $>4sigma$ significance, that wandering SMBHs are preferentially found outside of galactic disks.
We determine the main properties of the Galactic binary black hole (BBH) population detectable by LISA and strategies to distinguish them from the much more numerous white dwarf binaries. We simulate BBH populations based on cosmological simulations of Milky Way-like galaxies and binary evolution models. We then determine their gravitational wave emission as observed by LISA and build mock catalogs. According to our model LISA will detect $approx4(6)$ binary black holes assuming 4(10) years of operations. Those figures grow to $approx6(9)$ when models are re-normalized to the inferred LIGO/Virgo merger rates. About 40%(70%) of the sources will have a good enough chirp mass measurement to separate them from the much lighter white dwarf and neutron star binaries. Most of the remaining sources should be identifiable by their lack of electromagnetic counterpart within $approx100$ pc. These results are robust with respect to the current uncertainties of the BBH merger rate as measured by LIGO/Virgo as well as the global mass spectrum of the binaries. We determine there is a 94 per cent chance that LISA finds at least one of these systems, which will allow us to pinpoint the conditions where they were formed and possibly find unique electromagnetic signatures.
We present the first comparison between the lifetime star formation histories (SFHs) of M31 and Milky Way (MW) satellites. Using the Advanced Camera for Surveys aboard the Hubble Space Telescope, we obtained deep optical imaging of Andromeda II (M$_{V} = -$12.0; log(M$_{star}$/M$_{odot}$) $sim$ 6.7) and Andromeda XVI (M$_{V} = -$7.5; log(M$_{star}$/M$_{odot}$) $sim$ 4.9) yielding color-magnitude diagrams that extend at least 1 magnitude below the oldest main sequence turnoff, and are similar in quality to those available for the MW companions. And II and And XVI show strikingly similar SFHs: both formed 50-70% of their total stellar mass between 12.5 and 5 Gyr ago (z$sim$5-0.5) and both were abruptly quenched $sim$ 5 Gyr ago (z$sim$0.5). The predominance of intermediate age populations in And XVI makes it qualitatively different from faint companions of the MW and clearly not a pre-reionization fossil. Neither And II nor And XVI appears to have a clear analog among MW companions, and the degree of similarity in the SFHs of And II and And XVI is not seen among comparably faint-luminous pairs of MW satellites. These findings provide hints that satellite galaxy evolution may vary substantially among hosts of similar stellar mass. Although comparably deep observations of more M31 satellites are needed to further explore this hypothesis, our results underline the need for caution when interpreting satellite galaxies of an individual system in a broader cosmological context.
The next generation of electromagnetic and gravitational wave observatories will open unprecedented windows to the birth of the first supermassive black holes. This has the potential to reveal their origin and growth in the first billion years, as well as the signatures of their formation history in the local Universe. With this in mind, we outline three key focus areas which will shape research in the next decade and beyond: (1) What were the seeds of the first quasars; how did some reach a billion solar masses before z$sim7$? (2) How does black hole growth change over cosmic time, and how did the early growth of black holes shape their host galaxies? What can we learn from intermediate mass black holes (IMBHs) and dwarf galaxies today? (3) Can we unravel the physics of black hole accretion, understanding both inflows and outflows (jets and winds) in the context of the theory of general relativity? Is it valid to use these insights to scale between stellar and supermassive BHs, i.e., is black hole accretion really scale invariant? In the following, we identify opportunities for the Canadian astronomical community to play a leading role in addressing these issues, in particular by leveraging our strong involvement in the Event Horizon Telescope, the {it James Webb Space Telescope} (JWST), Euclid, the Maunakea Spectroscopic Explorer (MSE), the Thirty Meter Telescope (TMT), the Square Kilometer Array (SKA), the Cosmological Advanced Survey Telescope for Optical and ultraviolet Research (CASTOR), and more. We also discuss synergies with future space-based gravitational wave (LISA) and X-ray (e.g., Athena, Lynx) observatories, as well as the necessity for collaboration with the stellar and galactic evolution communities to build a complete picture of the birth of supermassive black holes, and their growth and their influence over the history of the Universe.
We study the chemical evolution of the disks of the Milky Way (MW) and of Andromeda (M31), in order to reveal common points and differences between the two major galaxies of the Local group. We use a large set of observational data for M31, including recent observations of the Star Formation Rate (SFR) and gas profiles, as well as stellar metallicity distributions along its disk. We show that, when expressed in terms of the corresponding disk scale lengths, the observed radial profiles of MW and M31 exhibit interesting similarities, suggesting the possibility of a description within a common framework. We find that the profiles of stars, gas fraction and metallicity of the two galaxies, as well as most of their global properties, are well described by our model, provided the star formation efficiency in M31 disk is twice as large as in the MW. We show that the star formation rate profile of M31 cannot be fitted with any form of the Kennicutt-Schmidt law (KS Law) for star formation. We attribute those discrepancies to the fact that M31 has undergone a more active star formation history, even in the recent past, as suggested by observations of a head-on collision with the neighboring M32 galaxy about 200 Myr ago. The MW has most probably undergone a quiescent secular evolution, making possible a fairly successful description with a simple model. If M31 is more typical of spiral galaxies, as recently suggested by Hammer et al. (2007), more complex models, involving galaxy interactions, will be required for the description of spirals.