Do you want to publish a course? Click here

RF pulse amplifier for CVD-diamond particle detectors

89   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

This article introduces a design of a Low Noise Amplifier (LNA), for the field of diamond particle detectors. This amplifier is described from simulation to measurements, which include pulses from {alpha} particles detection. In hadron therapy, with high-frequency pulsed particle beams, the diamond detector is a promising candidate for beam monitoring and time-stamping, with prerequisite of fast electronics. The LNA is designed with surface mounted components and RF layout techniques to control costs and to allow timing performance suitable for sub-nanosecond edges of pulses. Also this amplifier offers the possibility of high voltage biasing, a characteristic essential for driving diamond detectors. Finally the greatest asset of this study is certainly the minimization of the power consumption, which allows us to consider designs with multiple amplifiers, in limited space, for striped diamond detectors.



rate research

Read More

Diamond is a material in use at many nuclear and high energy facilities due to its inherent radiation tolerance and ease of use. We have characterized detectors based on chemical vapor deposition (CVD) diamond before and after proton irradiation. We present preliminary results of the spatial resolution of unirradiated and irradiated CVD diamond strip sensors. In addition, we measured the pulse height versus particle rate of unirradiated and irradiated polycrystalline CVD (pCVD) diamond pad detectors up to a particle flux of $20,mathrm{MHz/cm^2}$ and a fluence up to $4 times 10^{15},n/mathrm{cm^2}$.
At the n_TOF experiment at CERN a dedicated single-crystal chemical vapor deposition (sCVD) Diamond Mosaic-Detector has been developed for (n,$alpha$) cross-section measurements. The detector, characterized by an excellent time and energy resolution, consists of an array of 9 sCVD diamond diodes. The detector has been characterized and a cross-section measurement has been performed for the $^{59}$Ni(n,$alpha$)$^{56}$Fe reaction in 2012. The characteristics of the detector, its performance and the promising preliminary results of the experiment are presented.
Diamonds are very promising candidates for the neutron diagnostics in harsh environments such as fusion reactor. In the first place this is because of their radiation hardness, exceeding that of Silicon by an order of magnitude. Also, in comparison to the standard on-line neutron diagnostics (fission chambers, silicon based detectors, scintillators), diamonds are less sensitive to $gamma$ rays, which represent a huge background in fusion devices. Finally, their low leakage current at high temperature suppresses the detector intrinsic noise. In this talk a CVD diamond based detector has been proposed for the measurement of the 14 MeV neutrons from D-T fusion reaction. The detector was arranged in a proton recoil telescope configuration, featuring a plastic converter in front of the sensitive volume in order to induce the (n,p) reaction. The segmentation of the sensitive volume, achieved by using two crystals, allowed to perform measurements in coincidence, which suppressed the neutron elastic scattering background. A preliminary prototype was assembled and tested at FNG (Frascati Neutron Generator, ENEA), showing promising results regarding efficiency and energy resolution.
98 - T. Lari , A. Oh , N. Wermes 2004
A pixel detector with a CVD diamond sensor has been studied in a 180 GeV/c pion beam. The charge collection properties of the diamond sensor were studied as a function of the track position, which was measured with a silicon microstrip telescope. Non-uniformities were observed on a length scale comparable to the diamond crystallites size. In some regions of the sensor, the charge drift appears to have a component parallel to the sensor surface (i.e., normal to the applied electric field) resulting in systematic residuals between the track position and the hits position as large as 40 $mu$m. A numerical simulation of the charge drift in polycrystalline diamond was developed to compute the signal induced on the electrodes by the electrons and holes released by the passing particles. The simulation takes into account the crystallite structure, non-uniform trapping across the sensor, diffusion and polarization effects. It is in qualitative agreement with the data. Additional lateral electric field components result from the non-uniform trapping of charges in the bulk. These provide a good explanation for the large residuals observed.
The development of Chemical Vapour Deposition (CVD) diamond detectors requests for novel signal amplifiers, capable to match the superb signal-to-noise ratio and timing response of these detectors. Existing amplifiers are still far away from this goal and are the dominant contributors to the overall system noise and the main source of degradation of the energy and timing resolution. We tested a number of commercial amplifiers designed for diamond detector readout to identify the best solution for a particular application. This application required a deposited energy threshold below 100 keV and timing resolution of the order of 200 ps at 200 keV. None of tested amplifiers satisfies these requirements. The best solution to such application found to be the Cividec C6 amplifier, which allows 100 keV minimal threshold, but its coincidence timing resolution at 200 keV is as large as 1.2 ns.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا