Do you want to publish a course? Click here

LVCNet: Efficient Condition-Dependent Modeling Network for Waveform Generation

70   0   0.0 ( 0 )
 Added by Jianzong Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, we propose a novel conditional convolution network, named location-variable convolution, to model the dependencies of the waveform sequence. Different from the use of unified convolution kernels in WaveNet to capture the dependencies of arbitrary waveform, the location-variable convolution uses convolution kernels with different coefficients to perform convolution operations on different waveform intervals, where the coefficients of kernels is predicted according to conditioning acoustic features, such as Mel-spectrograms. Based on location-variable convolutions, we design LVCNet for waveform generation, and apply it in Parallel WaveGAN to design more efficient vocoder. Experiments on the LJSpeech dataset show that our proposed model achieves a four-fold increase in synthesis speed compared to the original Parallel WaveGAN without any degradation in sound quality, which verifies the effectiveness of location-variable convolutions.



rate research

Read More

161 - Nanxin Chen , Yu Zhang , Heiga Zen 2020
This paper introduces WaveGrad, a conditional model for waveform generation which estimates gradients of the data density. The model is built on prior work on score matching and diffusion probabilistic models. It starts from a Gaussian white noise signal and iteratively refines the signal via a gradient-based sampler conditioned on the mel-spectrogram. WaveGrad offers a natural way to trade inference speed for sample quality by adjusting the number of refinement steps, and bridges the gap between non-autoregressive and autoregressive models in terms of audio quality. We find that it can generate high fidelity audio samples using as few as six iterations. Experiments reveal WaveGrad to generate high fidelity audio, outperforming adversarial non-autoregressive baselines and matching a strong likelihood-based autoregressive baseline using fewer sequential operations. Audio samples are available at https://wavegrad.github.io/.
90 - Yi Zhao , Xin Wang , Lauri Juvela 2019
Recent neural waveform synthesizers such as WaveNet, WaveGlow, and the neural-source-filter (NSF) model have shown good performance in speech synthesis despite their different methods of waveform generation. The similarity between speech and music audio synthesis techniques suggests interesting avenues to explore in terms of the best way to apply speech synthesizers in the music domain. This work compares three neural synthesizers used for musical instrument sounds generation under three scenarios: training from scratch on music data, zero-shot learning from the speech domain, and fine-tuning-based adaptation from the speech to the music domain. The results of a large-scale perceptual test demonstrated that the performance of three synthesizers improved when they were pre-trained on speech data and fine-tuned on music data, which indicates the usefulness of knowledge from speech data for music audio generation. Among the synthesizers, WaveGlow showed the best potential in zero-shot learning while NSF performed best in the other scenarios and could generate samples that were perceptually close to natural audio.
The state-of-the-art in text-to-speech synthesis has recently improved considerably due to novel neural waveform generation methods, such as WaveNet. However, these methods suffer from their slow sequential inference process, while their parall
Speech separation has been extensively studied to deal with the cocktail party problem in recent years. All related approaches can be divided into two categories: time-frequency domain methods and time domain methods. In addition, some methods try to generate speaker vectors to support source separation. In this study, we propose a new model called dual-path filter network (DPFN). Our model focuses on the post-processing of speech separation to improve speech separation performance. DPFN is composed of two parts: the speaker module and the separation module. First, the speaker module infers the identities of the speakers. Then, the separation module uses the speakers information to extract the voices of individual speakers from the mixture. DPFN constructed based on DPRNN-TasNet is not only superior to DPRNN-TasNet, but also avoids the problem of permutation-invariant training (PIT).
Recent speech technology research has seen a growing interest in using WaveNets as statistical vocoders, i.e., generating speech waveforms from acoustic features. These models have been shown to improve the generated speech quality over classical vocoders in many tasks, such as text-to-speech synthesis and voice conversion. Furthermore, conditioning WaveNets with acoustic features allows sharing the waveform generator model across multiple speakers without additional speaker codes. However, multi-speaker WaveNet models require large amounts of training data and computation to cover the entire acoustic space. This paper proposes leveraging the source-filter model of speech production to more effectively train a speaker-independent waveform generator with limited resources. We present a multi-speaker GlotNet vocoder, which utilizes a WaveNet to generate glottal excitation waveforms, which are then used to excite the corresponding vocal tract filter to produce speech. Listening tests show that the proposed model performs favourably to a direct WaveNet vocoder trained with the same model architecture and data.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا