Do you want to publish a course? Click here

Wallpaper group kirigami

80   0   0.0 ( 0 )
 Added by Gary Pui-Tung Choi
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Kirigami, the art of paper cutting, has become a paradigm for mechanical metamaterials in recent years. The basic building blocks of any kirigami structures are repetitive deployable patterns that derive inspiration from geometric art forms and simple planar tilings. Here we complement these approaches by directly linking kirigami patterns to the symmetry associated with the set of seventeen repeating patterns that fully characterize the space of periodic tilings of the plane. We start by showing how to construct deployable kirigami patterns using any of the wallpaper groups, and then design symmetry-preserving cut patterns to achieve arbitrary size changes via deployment. We further prove that different symmetry changes can be achieved by controlling the shape and connectivity of the tiles and connect these results to the underlying kirigami-based lattice structures. All together, our work provides a systematic approach for creating a broad range of kirigami-based deployable structures with any prescribed size and symmetry properties.



rate research

Read More

Kirigami involves cutting a flat, thin sheet that allows it to morph from a closed, compact configuration into an open deployed structure via coordinated rotations of the internal tiles. By recognizing and generalizing the geometric constraints that enable this art form, we propose a design framework for compact reconfigurable kirigami patterns, which can morph from a closed and compact configuration into a deployed state conforming to any prescribed target shape, and subsequently be contracted into a different closed and compact configuration. We further establish a condition for producing kirigami patterns which are reconfigurable and rigid deployable allowing us to connect the compact states via a zero-energy family of deployed states. All together, our inverse design framework lays out a new path for the creation of shape-morphing material structures.
Kirigami, the art of introducing cuts in thin sheets to enable articulation and deployment, has till recently been the domain of artists. With the realization that these structures form a novel class of mechanical metamaterials, there is increasing interest in using periodic tiling patterns as the basis for the space of designs. Here, we show that aperiodic quasicrystals can also serve as the basis for designing deployable kirigami structures and analyze their geometrical, topological and mechanical properties. Our work explores the interplay between geometry, topology and mechanics for the design of aperiodic kirigami patterns, thereby enriching our understanding of the effectiveness of kirigami cuts in metamaterial design.
Modified group projector technique for induced representations is a powerful tool for calculation and symmetry quantum numbers assignation of a tight binding Hamiltonian energy bands of crystals. Namely, the induced type structure of such a Hamiltonian enables efficient application of the procedure: only the interior representations of the orbit stabilizers are to be considered. Then the generalized Bloch eigen functions are obtained naturally by the expansion to the whole state space. The method is applied to the electronic pi-bands of the single wall carbon nanotubes: together with dispersion relations, their complete symmetry assignation by the full symmetry (line) groups and the corresponding symmetry-adapted eigen function are found.
We present a theorem on the compatibility upon deployment of kirigami tessellations restricted on a spherical surface with patterned cuts forming freeform quadrilateral meshes. We show that the spherical kirigami tessellations have either one or two compatible states, i.e., there are at most two isolated strain-free configurations along the deployment path. The proof of the theorem is based on analyzing the number of roots of the compatibility condition, under which the kirigami pattern allows a piecewise isometric transformation between the undeployed and deployed configurations. As a degenerate case, the theorem further reveals that neutral equilibrium arises for planar quadrilateral kirigami tessellations if and only if the cuts form parallelogram voids. Our study provides new insights into the rational design of morphable structures based on Euclidean and non-Euclidean geometries.
How can we manipulate the topological connectivity of a three-dimensional prismatic assembly to control the number of internal degrees of freedom and the number of connected components in it? To answer this question in a deterministic setting, we use ideas from elementary number theory to provide a hierarchical deterministic protocol for the control of rigidity and connectivity. We then show that is possible to also use a stochastic protocol to achieve the same results via a percolation transition. Together, these approaches provide scale-independent algorithms for the cutting or gluing of three-dimensional prismatic assemblies to control their overall connectivity and rigidity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا