Do you want to publish a course? Click here

Hierarchical Attention Networks for Medical Image Segmentation

113   0   0.0 ( 0 )
 Added by Fei Ding
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

The medical image is characterized by the inter-class indistinction, high variability, and noise, where the recognition of pixels is challenging. Unlike previous self-attention based methods that capture context information from one level, we reformulate the self-attention mechanism from the view of the high-order graph and propose a novel method, namely Hierarchical Attention Network (HANet), to address the problem of medical image segmentation. Concretely, an HA module embedded in the HANet captures context information from neighbors of multiple levels, where these neighbors are extracted from the high-order graph. In the high-order graph, there will be an edge between two nodes only if the correlation between them is high enough, which naturally reduces the noisy attention information caused by the inter-class indistinction. The proposed HA module is robust to the variance of input and can be flexibly inserted into the existing convolution neural networks. We conduct experiments on three medical image segmentation tasks including optic disc/cup segmentation, blood vessel segmentation, and lung segmentation. Extensive results show our method is more effective and robust than the existing state-of-the-art methods.



rate research

Read More

Over the past decade, Deep Convolutional Neural Networks have been widely adopted for medical image segmentation and shown to achieve adequate performance. However, due to the inherent inductive biases present in the convolutional architectures, they lack understanding of long-range dependencies in the image. Recently proposed Transformer-based architectures that leverage self-attention mechanism encode long-range dependencies and learn representations that are highly expressive. This motivates us to explore Transformer-based solutions and study the feasibility of using Transformer-based network architectures for medical image segmentation tasks. Majority of existing Transformer-based network architectures proposed for vision applications require large-scale datasets to train properly. However, compared to the datasets for vision applications, for medical imaging the number of data samples is relatively low, making it difficult to efficiently train transformers for medical applications. To this end, we propose a Gated Axial-Attention model which extends the existing architectures by introducing an additional control mechanism in the self-attention module. Furthermore, to train the model effectively on medical images, we propose a Local-Global training strategy (LoGo) which further improves the performance. Specifically, we operate on the whole image and patches to learn global and local features, respectively. The proposed Medical Transformer (MedT) is evaluated on three different medical image segmentation datasets and it is shown that it achieves better performance than the convolutional and other related transformer-based architectures. Code: https://github.com/jeya-maria-jose/Medical-Transformer
282 - Ghada Zamzmi , Vandana Sachdev , 2021
Accurate segmentation of medical images into anatomically meaningful regions is critical for the extraction of quantitative indices or biomarkers. The common pipeline for segmentation comprises regions of interest detection stage and segmentation stage, which are independent of each other and typically performed using separate deep learning networks. The performance of the segmentation stage highly relies on the extracted set of spatial features and the receptive fields. In this work, we propose an end-to-end network, called Trilateral Attention Network (TaNet), for real-time detection and segmentation in medical images. TaNet has a module for region localization, and three segmentation pathways: 1) handcrafted pathway with hand-designed convolutional kernels, 2) detail pathway with regular convolutional kernels, and 3) a global pathway to enlarge the receptive field. The first two pathways encode rich handcrafted and low-level features extracted by hand-designed and regular kernels while the global pathway encodes high-level context information. By jointly training the network for localization and segmentation using different sets of features, TaNet achieved superior performance, in terms of accuracy and speed, when evaluated on an echocardiography dataset for cardiac segmentation. The code and models will be made publicly available in TaNet Github page.
There has been a debate in 3D medical image segmentation on whether to use 2D or 3D networks, where both pipelines have advantages and disadvantages. 2D methods enjoy a low inference time and greater transfer-ability while 3D methods are superior in performance for hard targets requiring contextual information. This paper investigates efficient 3D segmentation from another perspective, which uses 2D networks to mimic 3D segmentation. To compensate the lack of contextual information in 2D manner, we propose to thicken the 2D network inputs by feeding multiple slices as multiple channels into 2D networks and thus 3D contextual information is incorporated. We also put forward to use early-stage multiplexing and slice sensitive attention to solve the confusion problem of information loss which occurs when 2D networks face thickened inputs. With this design, we achieve a higher performance while maintaining a lower inference latency on a few abdominal organs from CT scans, in particular when the organ has a peculiar 3D shape and thus strongly requires contextual information, demonstrating our methods effectiveness and ability in capturing 3D information. We also point out that thickened 2D inputs pave a new method of 3D segmentation, and look forward to more efforts in this direction. Experiments on segmenting a few abdominal targets in particular blood vessels which require strong 3D contexts demonstrate the advantages of our approach.
Deep neural networks have been a prevailing technique in the field of medical image processing. However, the most popular convolutional neural networks (CNNs) based methods for medical image segmentation are imperfect because they model long-range dependencies by stacking layers or enlarging filters. Transformers and the self-attention mechanism are recently proposed to effectively learn long-range dependencies by modeling all pairs of word-to-word attention regardless of their positions. The idea has also been extended to the computer vision field by creating and treating image patches as embeddings. Considering the computation complexity for whole image self-attention, current transformer-based models settle for a rigid partitioning scheme that potentially loses informative relations. Besides, current medical transformers model global context on full resolution images, leading to unnecessary computation costs. To address these issues, we developed a novel method to integrate multi-scale attention and CNN feature extraction using a pyramidal network architecture, namely Pyramid Medical Transformer (PMTrans). The PMTrans captured multi-range relations by working on multi-resolution images. An adaptive partitioning scheme was implemented to retain informative relations and to access different receptive fields efficiently. Experimental results on three medical image datasets (gland segmentation, MoNuSeg, and HECKTOR datasets) showed that PMTrans outperformed the latest CNN-based and transformer-based models for medical image segmentation.
Modern deep neural networks struggle to transfer knowledge and generalize across domains when deploying to real-world applications. Domain generalization (DG) aims to learn a universal representation from multiple source domains to improve the network generalization ability on unseen target domains. Previous DG methods mostly focus on the data-level consistency scheme to advance the generalization capability of deep networks, without considering the synergistic regularization of different consistency schemes. In this paper, we present a novel Hierarchical Consistency framework for Domain Generalization (HCDG) by ensembling Extrinsic Consistency and Intrinsic Consistency. Particularly, for Extrinsic Consistency, we leverage the knowledge across multiple source domains to enforce data-level consistency. Also, we design a novel Amplitude Gaussian-mixing strategy for Fourier-based data augmentation to enhance such consistency. For Intrinsic Consistency, we perform task-level consistency for the same instance under the dual-task form. We evaluate the proposed HCDG framework on two medical image segmentation tasks, i.e., optic cup/disc segmentation on fundus images and prostate MRI segmentation. Extensive experimental results manifest the effectiveness and versatility of our HCDG framework. Code will be available once accept.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا