Do you want to publish a course? Click here

Customized Slicing for 6G: Enforcing Artificial Intelligence on Resource Management

129   0   0.0 ( 0 )
 Added by Haijun Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Next generation wireless networks are expected to support diverse vertical industries and offer countless emerging use cases. To satisfy stringent requirements of diversified services, network slicing is developed, which enables service-oriented resource allocation by tailoring the infrastructure network into multiple logical networks. However, there are still some challenges in cross-domain multi-dimensional resource management for end-to-end (E2E) slices under the dynamic and uncertain environment. Trading off the revenue and cost of resource allocation while guaranteeing service quality is significant to tenants. Therefore, this article introduces a hierarchical resource management framework, utilizing deep reinforcement learning in admission control of resource requests from different tenants and resource adjustment within admitted slices for each tenant. Particularly, we first discuss the challenges in customized resource management of 6G. Second, the motivation and background are presented to explain why artificial intelligence (AI) is applied in resource customization of multi-tenant slicing. Third, E2E resource management is decomposed into two problems, multi-dimensional resource allocation decision based on slice-level feedback and real-time slice adaption aimed at avoiding service quality degradation. Simulation results demonstrate the effectiveness of AI-based customized slicing. Finally, several significant challenges that need to be addressed in practical implementation are investigated.



rate research

Read More

Network slicing is born as an emerging business to operators, by allowing them to sell the customized slices to various tenants at different prices. In order to provide better-performing and cost-efficient services, network slicing involves challenging technical issues and urgently looks forward to intelligent innovations to make the resource management consistent with users activities per slice. In that regard, deep reinforcement learning (DRL), which focuses on how to interact with the environment by trying alternative actions and reinforcing the tendency actions producing more rewarding consequences, is assumed to be a promising solution. In this paper, after briefly reviewing the fundamental concepts of DRL, we investigate the application of DRL in solving some typical resource management for network slicing scenarios, which include radio resource slicing and priority-based core network slicing, and demonstrate the advantage of DRL over several competing schemes through extensive simulations. Finally, we also discuss the possible challenges to apply DRL in network slicing from a general perspective.
In this article, we first present the vision, key performance indicators, key enabling techniques (KETs), and services of 6G wireless networks. Then, we highlight a series of general resource management (RM) challenges as well as unique RM challenges corresponding to each KET. The unique RM challenges in 6G necessitate the transformation of existing optimization-based solutions to artificial intelligence/machine learning-empowered solutions. In the sequel, we formulate a joint network selection and subchannel allocation problem for 6G multi-band network that provides both further enhanced mobile broadband (FeMBB) and extreme ultra reliable low latency communication (eURLLC) services to the terrestrial and aerial users. Our solution highlights the efficacy of multi-band network and demonstrates the robustness of dueling deep Q-learning in obtaining efficient RM solution with faster convergence rate compared to deep-Q network and double deep Q-network algorithms.
164 - Wen Wu , Conghao Zhou , Mushu Li 2021
With the global roll-out of the fifth generation (5G) networks, it is necessary to look beyond 5G and envision the sixth generation (6G) networks. The 6G networks are expected to have space-air-ground integrated networking, advanced network virtualization, and ubiquitous intelligence. This article proposes an artificial intelligence (AI)-native network slicing architecture for 6G networks to facilitate intelligent network management and support emerging AI services. AI is built in the proposed network slicing architecture to enable the synergy of AI and network slicing. AI solutions are investigated for the entire lifecycle of network slicing to facilitate intelligent network management, i.e., AI for slicing. Furthermore, network slicing approaches are discussed to support emerging AI services by constructing slice instances and performing efficient resource management, i.e., slicing for AI. Finally, a case study is presented, followed by a discussion of open research issues that are essential for AI-native network slicing in 6G.
The mobile communication system has transformed to be the fundamental infrastructure to support digital demands from all industry sectors, and 6G is envisioned to go far beyond the communication-only purpose. There is coming to a consensus that 6G will treat Artificial Intelligence (AI) as the cornerstone and has a potential capability to provide intelligence inclusion, which implies to enable the access of AI services at anytime and anywhere by anyone. Apparently, the intelligent inclusion vision produces far-reaching influence on the corresponding network architecture design in 6G and deserves a clean-slate rethink. In this article, we propose an end-to-end system architecture design scope for 6G, and talk about the necessity to incorporate an independent data plane and a novel intelligent plane with particular emphasis on end-to-end AI workflow orchestration, management and operation. We also highlight the advantages to provision converged connectivity and computing services at the network function plane. Benefiting from these approaches, we believe that 6G will turn to an everything as a service (XaaS) platform with significantly enhanced business merits.
The next generations of mobile networks will be deployed as ultra-dense networks, to match the demand for increased capacity and the challenges that communications in the higher portion of the spectrum (i.e., the mmWave band) introduce. Ultra-dense networks, however, require pervasive, high-capacity backhaul solutions, and deploying fiber optic to all base stations is generally considered to be too expensive for network operators. The 3rd Generation Partnership Project (3GPP) has thus introduced Integrated Access and Backhaul (IAB), a wireless backhaul solution in which the access and backhaul links share the same hardware, protocol stack, and also spectrum. The multiplexing of different links in the same frequency bands, however, introduces interference and capacity sharing issues, thus calling for the introduction of advanced scheduling and coordination schemes. This paper proposes a semi-centralized resource allocation scheme for IAB networks, designed to be flexible, with low complexity, and compliant with the 3GPP IAB specifications. We develop a version of the Maximum Weighted Matching (MWM) problem that can be applied on a spanning tree that represents the IAB network and whose complexity is linear in the number of IAB-nodes. The proposed solution is compared with state-of-the-art distributed approaches through end-to-end, full-stack system-level simulations with a 3GPP-compliant channel model, protocol stack, and a diverse set of user applications. The results show how that our scheme can increase the throughput of cell-edge users up to 5 times, while decreasing the overall network congestion with an end-to-end delay reduction of up to 25 times.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا