Do you want to publish a course? Click here

Mine Your Own vieW: Self-Supervised Learning Through Across-Sample Prediction

350   0   0.0 ( 0 )
 Added by Mehdi Azabou
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

State-of-the-art methods for self-supervised learning (SSL) build representations by maximizing the similarity between different augmented views of a sample. Because these approaches try to match views of the same sample, they can be too myopic and fail to produce meaningful results when augmentations are not sufficiently rich. This motivates the use of the dataset itself to find similar, yet distinct, samples to serve as views for one another. In this paper, we introduce Mine Your Own vieW (MYOW), a new approach for building across-sample prediction into SSL. The idea behind our approach is to actively mine views, finding samples that are close in the representation space of the network, and then predict, from one samples latent representation, the representation of a nearby sample. In addition to showing the promise of MYOW on standard datasets used in computer vision, we highlight the power of this idea in a novel application in neuroscience where rich augmentations are not already established. When applied to neural datasets, MYOW outperforms other self-supervised approaches in all examples (in some cases by more than 10%), and surpasses the supervised baseline for most datasets. By learning to predict the latent representation of similar samples, we show that it is possible to learn good representations in new domains where augmentations are still limited.



rate research

Read More

We introduce Bootstrap Your Own Latent (BYOL), a new approach to self-supervised image representation learning. BYOL relies on two neural networks, referred to as online and target networks, that interact and learn from each other. From an augmented view of an image, we train the online network to predict the target network representation of the same image under a different augmented view. At the same time, we update the target network with a slow-moving average of the online network. While state-of-the art methods rely on negative pairs, BYOL achieves a new state of the art without them. BYOL reaches $74.3%$ top-1 classification accuracy on ImageNet using a linear evaluation with a ResNet-50 architecture and $79.6%$ with a larger ResNet. We show that BYOL performs on par or better than the current state of the art on both transfer and semi-supervised benchmarks. Our implementation and pretrained models are given on GitHub.
Electronic Health Record (EHR) data has been of tremendous utility in Artificial Intelligence (AI) for healthcare such as predicting future clinical events. These tasks, however, often come with many challenges when using classical machine learning models due to a myriad of factors including class imbalance and data heterogeneity (i.e., the complex intra-class variances). To address some of these research gaps, this paper leverages the exciting contrastive learning framework and proposes a novel contrastive regularized clinical classification model. The contrastive loss is found to substantially augment EHR-based prediction: it effectively characterizes the similar/dissimilar patterns (by its push-and-pull form), meanwhile mitigating the highly skewed class distribution by learning more balanced feature spaces (as also echoed by recent findings). In particular, when naively exporting the contrastive learning to the EHR data, one hurdle is in generating positive samples, since EHR data is not as amendable to data augmentation as image data. To this end, we have introduced two unique positive sampling strategies specifically tailored for EHR data: a feature-based positive sampling that exploits the feature space neighborhood structure to reinforce the feature learning; and an attribute-based positive sampling that incorporates pre-generated patient similarity metrics to define the sample proximity. Both sampling approaches are designed with an awareness of unique high intra-class variance in EHR data. Our overall framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data with a total of 5,712 patients admitted to a large, urban health system. Specifically, our method reaches a high AUROC prediction score of 0.959, which outperforms other baselines and alternatives: cross-entropy(0.873) and focal loss(0.931).
As a subset of unsupervised representation learning, self-supervised representation learning adopts self-defined signals as supervision and uses the learned representation for downstream tasks, such as object detection and image captioning. Many proposed approaches for self-supervised learning follow naturally a multi-view perspective, where the input (e.g., original images) and the self-supervised signals (e.g., augmented images) can be seen as two redundant views of the data. Building from this multi-view perspective, this paper provides an information-theoretical framework to better understand the properties that encourage successful self-supervised learning. Specifically, we demonstrate that self-supervised learned representations can extract task-relevant information and discard task-irrelevant information. Our theoretical framework paves the way to a larger space of self-supervised learning objective design. In particular, we propose a composite objective that bridges the gap between prior contrastive and predictive learning objectives, and introduce an additional objective term to discard task-irrelevant information. To verify our analysis, we conduct controlled experiments to evaluate the impact of the composite objectives. We also explore our frameworks empirical generalization beyond the multi-view perspective, where the cross-view redundancy may not be clearly observed.
To take full advantage of fast-growing unlabeled networked data, this paper introduces a novel self-supervised strategy for graph representation learning by exploiting natural supervision provided by the data itself. Inspired by human social behavior, we assume that the global context of each node is composed of all nodes in the graph since two arbitrary entities in a connected network could interact with each other via paths of varying length. Based on this, we investigate whether the global context can be a source of free and effective supervisory signals for learning useful node representations. Specifically, we randomly select pairs of nodes in a graph and train a well-designed neural net to predict the contextual position of one node relative to the other. Our underlying hypothesis is that the representations learned from such within-graph context would capture the global topology of the graph and finely characterize the similarity and differentiation between nodes, which is conducive to various downstream learning tasks. Extensive benchmark experiments including node classification, clustering, and link prediction demonstrate that our approach outperforms many state-of-the-art unsupervised methods and sometimes even exceeds the performance of supervised counterparts.
This paper explores the generalization loss of linear regression in variably parameterized families of models, both under-parameterized and over-parameterized. We show that the generalization curve can have an arbitrary number of peaks, and moreover, locations of those peaks can be explicitly controlled. Our results highlight the fact that both classical U-shaped generalization curve and the recently observed double descent curve are not intrinsic properties of the model family. Instead, their emergence is due to the interaction between the properties of the data and the inductive biases of learning algorithms.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا