Do you want to publish a course? Click here

Construction of Side Channel Attacks Resistant S-boxes using Genetic Algorithms based on Coordinate Functions

76   0   0.0 ( 0 )
 Added by Behrooz Khadem
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Background and Objectives: Substitution-box (s-box) is one of the essential components to create confusion and nonlinear properties in cryptography. To strengthening a cipher against various attacks, including side channel attacks, these boxes need to have numerous security properties. In this paper, a novel method to generate s-boxes is introduced aimed at improving the resistance of s-boxes against side channel attacks. Methods: In the preprocessing phase of this approach, a suitable initial s-box which has some basic security properties is generated by adopting a fast algorithm. Then, in the main stage, using the initial s-box, we generate new s-boxes which not only have the properties of the initial S-box but also have been significantly improved under another set of security properties. To do this, new s-boxes are generated using a genetic algorithm on a particular subset of the linear combination set of coordinate functions of the initial s-box in the preprocessing stage. Results: The performed experiments demonstrate that the values of all security properties of these new s-boxes, especially the measures of transparency order, signal-to-noise ratio, confusion coefficient, bijection property, fixed point, and opposite fixed points, have been substantially improved. For example, our experiments indicate that 70, 220, 2071, 43, and 406 s-boxes are found better than the initial s-box, respectively, in the dimensions of 4x4 through 8x8 Conclusion: In this article, a new s-box construction method is introduced in which the properties related to side channel attacks are improved, without reducing other security properties. Besides, some results obtained from generated s-boxes in the dimensions of 4x4 through 8x8 demonstrated that the generated s-boxes are not only improved relative to the initial s-box, but in some cases, considerably better than some well-known s-boxes.



rate research

Read More

The interplay between security and reliability is poorly understood. This paper shows how triple modular redundancy affects a side-channel attack (SCA). Our counterintuitive findings show that modular redundancy can increase SCA resiliency.
In recent years, various deep learning techniques have been exploited in side channel attacks, with the anticipation of obtaining more appreciable attack results. Most of them concentrate on improving network architectures or putting forward novel algorithms, assuming that there are adequate profiling traces available to train an appropriate neural network. However, in practical scenarios, profiling traces are probably insufficient, which makes the network learn deficiently and compromises attack performance. In this paper, we investigate a kind of data augmentation technique, called mixup, and first propose to exploit it in deep-learning based side channel attacks, for the purpose of expanding the profiling set and facilitating the chances of mounting a successful attack. We perform Correlation Power Analysis for generated traces and original traces, and discover that there exists consistency between them regarding leakage information. Our experiments show that mixup is truly capable of enhancing attack performance especially for insufficient profiling traces. Specifically, when the size of the training set is decreased to 30% of the original set, mixup can significantly reduce acquired attacking traces. We test three mixup parameter values and conclude that generally all of them can bring about improvements. Besides, we compare three leakage models and unexpectedly find that least significant bit model, which is less frequently used in previous works, actually surpasses prevalent identity model and hamming weight model in terms of attack results.
Numerous previous works have studied deep learning algorithms applied in the context of side-channel attacks, which demonstrated the ability to perform successful key recoveries. These studies show that modern cryptographic devices are increasingly threatened by side-channel attacks with the help of deep learning. However, the existing countermeasures are designed to resist classical side-channel attacks, and cannot protect cryptographic devices from deep learning based side-channel attacks. Thus, there arises a strong need for countermeasures against deep learning based side-channel attacks. Although deep learning has the high potential in solving complex problems, it is vulnerable to adversarial attacks in the form of subtle perturbations to inputs that lead a model to predict incorrectly. In this paper, we propose a kind of novel countermeasures based on adversarial attacks that is specifically designed against deep learning based side-channel attacks. We estimate several models commonly used in deep learning based side-channel attacks to evaluate the proposed countermeasures. It shows that our approach can effectively protect cryptographic devices from deep learning based side-channel attacks in practice. In addition, our experiments show that the new countermeasures can also resist classical side-channel attacks.
Recently, many profiling side-channel attacks based on Machine Learning and Deep Learning have been proposed. Most of them focus on reducing the number of traces required for successful attacks by optimizing the modeling algorithms. In previous work, relatively sufficient traces need to be used for training a model. However, in the practical profiling phase, it is difficult or impossible to collect sufficient traces due to the constraint of various resources. In this case, the performance of profiling attacks is inefficient even if proper modeling algorithms are used. In this paper, the main problem we consider is how to conduct more efficient profiling attacks when sufficient profiling traces cannot be obtained. To deal with this problem, we first introduce the Conditional Generative Adversarial Network (CGAN) in the context of side-channel attacks. We show that CGAN can generate new traces to enlarge the size of the profiling set, which improves the performance of profiling attacks. For both unprotected and protected cryptographic algorithms, we find that CGAN can effectively learn the leakage of traces collected in their implementations. We also apply it to different modeling algorithms. In our experiments, the model constructed with the augmented profiling set can reduce the required attack traces by more than half, which means the generated traces can provide useful information as the real traces.
Todays mobile devices contain densely packaged system-on-chips (SoCs) with multi-core, high-frequency CPUs and complex pipelines. In parallel, sophisticated SoC-assisted security mechanisms have become commonplace for protecting device data, such as trusted execution environments, full-disk and file-based encryption. Both advancements have dramatically complicated the use of conventional physical attacks, requiring the development of specialised attacks. In this survey, we consolidate recent developments in physical fault injections and side-channel attacks on modern mobile devices. In total, we comprehensively survey over 50 fault injection and side-channel attack papers published between 2009-2021. We evaluate the prevailing methods, compare existing attacks using a common set of criteria, identify several challenges and shortcomings, and suggest future directions of research.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا