No Arabic abstract
The problem of data-driven joint design of transmitted waveform and detector in a radar system is addressed in this paper. We propose two novel learning-based approaches to waveform and detector design based on end-to-end training of the radar system. The first approach consists of alternating supervised training of the detector for a fixed waveform and reinforcement learning of the transmitter for a fixed detector. In the second approach, the transmitter and detector are trained simultaneously. Various operational waveform constraints, such as peak-to-average-power ratio (PAR) and spectral compatibility, are incorporated into the design. Unlike traditional radar design methods that rely on rigid mathematical models with limited applicability, it is shown that radar learning can be robustified by training the detector with synthetic data generated from multiple statistical models of the environment. Theoretical considerations and results show that the proposed methods are capable of adapting the transmitted waveform to environmental conditions while satisfying design constraints.
An end-to-end learning approach is proposed for the joint design of transmitted waveform and detector in a radar system. Detector and transmitted waveform are trained alternately: For a fixed transmitted waveform, the detector is trained using supervised learning so as to approximate the Neyman-Pearson detector; and for a fixed detector, the transmitted waveform is trained using reinforcement learning based on feedback from the receiver. No prior knowledge is assumed about the target and clutter models. Both transmitter and receiver are implemented as feedforward neural networks. Numerical results show that the proposed end-to-end learning approach is able to obtain a more robust radar performance in clutter and colored noise of arbitrary probability density functions as compared to conventional methods, and to successfully adapt the transmitted waveform to environmental conditions.
Dual-functional radar-communication (DFRC) systems can simultaneously perform both radar and communication functionalities using the same hardware platform and spectrum resource. In this paper, we consider multi-input multi-output (MIMO) DFRC systems and focus on transmit beamforming designs to provide both radar sensing and multi-user communications. Unlike conventional block-level precoding techniques, we propose to use the recently emerged symbol-level precoding approach in DFRC systems, which provides additional degrees of freedom (DoFs) that guarantee preferable instantaneous transmit beampatterns for radar sensing and achieve better communication performance. In particular, the squared error between the designed and desired beampatterns is minimized subject to the quality-of-service (QoS) requirements of the communication users and the constant-modulus power constraint. Two efficient algorithms are developed to solve this non-convex problem on both the Euclidean and Riemannian spaces. The first algorithm employs penalty dual decomposition (PDD), majorization-minimization (MM), and block coordinate descent (BCD) methods to convert the original optimization problem into two solvable sub-problems, and iteratively solves them using efficient algorithms. The second algorithm provides a much faster solution at the price of a slight performance loss, first transforming the original problem into Riemannian space, and then utilizing the augmented Lagrangian method (ALM) to obtain an unconstrained problem that is subsequently solved via a Riemannian Broyden-Fletcher-Goldfarb-Shanno (RBFGS) algorithm. Extensive simulations verify the distinct advantages of the proposed symbol-level precoding designs in both radar sensing and multi-user communications.
In this paper, a novel end-to-end learning approach, namely JTRD-Net, is proposed for uplink multiuser single-input multiple-output (MU-SIMO) joint transmitter and non-coherent receiver design (JTRD) in fading channels. The basic idea lies in the use of artificial neural networks (ANNs) to replace traditional communication modules at both transmitter and receiver sides. More specifically, the transmitter side is modeled as a group of parallel linear layers, which are responsible for multiuser waveform design; and the non-coherent receiver is formed by a deep feed-forward neural network (DFNN) so as to provide multiuser detection (MUD) capabilities. The entire JTRD-Net can be trained from end to end to adapt to channel statistics through deep learning. After training, JTRD-Net can work efficiently in a non-coherent manner without requiring any levels of channel state information (CSI). In addition to the network architecture, a novel weight-initialization method, namely symmetrical-interval initialization, is proposed for JTRD-Net. It is shown that the symmetrical-interval initialization outperforms the conventional method (e.g. Xavier initialization) in terms of well-balanced convergence-rate among users. Simulation results show that the proposed JTRD-Net approach takes significant advantages in terms of reliability and scalability over baseline schemes on both i.i.d. complex Gaussian channels and spatially-correlated channels.
The convergence of radar sensing and communication applications in the terahertz (THz) band has been envisioned as a promising technology, since it incorporates terabit-per-second (Tbps) data transmission and mm-level radar sensing in a spectrum- and cost-efficient manner, by sharing both the frequency and hardware resources. However, the joint THz radar and communication (JRC) system faces considerable challenges, due to the peculiarities of the THz channel and front ends. To this end, the waveform design for THz-JRC systems with ultra-broad bandwidth is investigated in this paper. Firstly, by considering THz-JRC systems based on the co-existence concept, where both functions operate in a time-domain duplex (TDD) manner, a novel multi-subband quasi-perfect (MS-QP) sequence, composed of multiple Zadoff-Chu (ZC) perfect subsequences on different subbands, is proposed for target sensing, which achieves accurate target ranging and velocity estimation, whilst only requiring cost-efficient low-rate analog-to-digital converters (A/Ds) for sequence detection. Furthermore, the root index of each ZC subsequence of the MS-QP sequence is designed to eliminate the influence of doppler shift on the THz radar sensing. Finally, a data-embedded MS-QP (DE-MS-QP) waveform is constructed through time-domain extension of the MS-QP sequence, generating null frequency points on each subband for data transmission. Unlike the THz-JRC system in TDD manner, the proposed DE-MS-QP waveform enables simultaneous interference-free sensing and communication, whilst inheriting all the merits from MS-QP sequences. Numerical results validate the superiority of the proposed waveforms in terms of sensing performance, hardware cost and flexible resource allocation over their conventional counterparts.
Frequency-hopping (FH) MIMO radar-based dual-function radar communication (FH-MIMO DFRC) enables communication symbol rate to exceed radar pulse repetition frequency, which requires accurate estimations of timing offset and channel parameters. The estimations, however, are challenging due to unknown, fast-changing hopping frequencies and the multiplicative coupling between timing offset and channel parameters. In this paper, we develop accurate methods for a single-antenna communication receiver to estimate timing offset and channel for FH-MIMO DFRC. First, we design a novel FH-MIMO radar waveform, which enables a communication receiver to estimate the hopping frequency sequence (HFS) used by radar, instead of acquiring it from radar. Importantly, the novel waveform incurs no degradation to radar ranging performance. Then, via capturing distinct HFS features, we develop two estimators for timing offset and derive mean squared error lower bound of each estimator. Using the bounds, we design an HFS that renders both estimators applicable. Furthermore, we develop an accurate channel estimation method, reusing the single hop for timing offset estimation. Validated by simulations, the accurate channel estimates attained by the proposed methods enable the communication performance of DFRC to approach that achieved based on perfect timing and ideal knowledge of channel.