No Arabic abstract
Frequency-hopping (FH) MIMO radar-based dual-function radar communication (FH-MIMO DFRC) enables communication symbol rate to exceed radar pulse repetition frequency, which requires accurate estimations of timing offset and channel parameters. The estimations, however, are challenging due to unknown, fast-changing hopping frequencies and the multiplicative coupling between timing offset and channel parameters. In this paper, we develop accurate methods for a single-antenna communication receiver to estimate timing offset and channel for FH-MIMO DFRC. First, we design a novel FH-MIMO radar waveform, which enables a communication receiver to estimate the hopping frequency sequence (HFS) used by radar, instead of acquiring it from radar. Importantly, the novel waveform incurs no degradation to radar ranging performance. Then, via capturing distinct HFS features, we develop two estimators for timing offset and derive mean squared error lower bound of each estimator. Using the bounds, we design an HFS that renders both estimators applicable. Furthermore, we develop an accurate channel estimation method, reusing the single hop for timing offset estimation. Validated by simulations, the accurate channel estimates attained by the proposed methods enable the communication performance of DFRC to approach that achieved based on perfect timing and ideal knowledge of channel.
Enabled by the advancement in radio frequency technologies, the convergence of radar and communication systems becomes increasingly promising and is envisioned as a key feature of future 6G networks. Recently, the frequency-hopping (FH) MIMO radar is introduced to underlay dual-function radar-communication (DFRC) systems. Superior to many previous radar-centric DFRC designs, the symbol rate of FH-MIMO radar-based DFRC (FH-MIMO DFRC) can exceed the radar pulse repetition frequency. However, many practical issues, particularly those regarding effective data communications, are unexplored/unsolved. To promote the awareness and general understanding of the novel DFRC, this article is devoted to providing a timely introduction of FH-MIMO DFRC. We comprehensively review many essential aspects of the novel DFRC: channel/signal models, signaling strategies, modulation/demodulation processing and channel estimation methods, to name a few. We also highlight major remaining issues in FH-MIMO DFRC and suggest potential solutions to shed light on future research works.
Dual-function radar-communication (DFRC) based on frequency hopping (FH) MIMO radar (FH-MIMO DFRC) achieves symbol rate much higher than radar pulse repetition frequency. Such DFRC, however, is prone to eavesdropping due to the spatially uniform illumination of FH-MIMO radar. How to enhance the physical layer security of FH-MIMO DFRC is vital yet unsolved. In this paper, we reveal the potential of using permutations of hopping frequencies to achieve secure and high-speed FH-MIMO DFRC. Detecting permutations at a communication user is challenging due to the dependence on spatial angle. We propose a series of baseband waveform processing methods which address the challenge specifically for the legitimate user (Bob) and meanwhile scrambles constellations almost omnidirectionally. We discover a deterministic sign rule from the signals processed by the proposed methods. Based on the rule, we develop accurate algorithms for information decoding at Bob. Confirmed by simulation, our design achieves substantially high physical layer security for FH-MIMO DFRC, improves decoding performance compared with existing designs and reduces mutual interference among radar targets.
In this paper, we consider the design of a multiple-input multiple-output (MIMO) transmitter which simultaneously functions as a MIMO radar and a base station for downlink multiuser communications. In addition to a power constraint, we require the covariance of the transmit waveform be equal to a given optimal covariance for MIMO radar, to guarantee the radar performance. With this constraint, we formulate and solve the signal-to-interference-plus-noise ratio (SINR) balancing problem for multiuser transmit beamforming via convex optimization. Considering that the interference cannot be completely eliminated with this constraint, we introduce dirty paper coding (DPC) to further cancel the interference, and formulate the SINR balancing and sum rate maximization problem in the DPC regime. Although both of the two problems are non-convex, we show that they can be reformulated to convex optimizations via the Lagrange and downlink-uplink duality. In addition, we propose gradient projection based algorithms to solve the equivalent dual problem of SINR balancing, in both transmit beamforming and DPC regimes. The simulation results demonstrate significant performance improvement of DPC over transmit beamforming, and also indicate that the degrees of freedom for the communication transmitter is restricted by the rank of the covariance.
This paper studies the Two-Person Zero Sum(TPZS) game between a Multiple-Input Multiple-Output(MIMO) radar and an extended target with payoff function being the output Signal-to-Interference-pulse-Noise Ratio(SINR) at the radar receiver. The radar player wants to maximize SINR by adjusting its transmit waveform and receive filter. Conversely, the target player wants to minimize SINR by changing its Target Impulse Response(TIR) from a scaled sphere centered around a certain TIR. The interaction between them forms a Stackelberg game where the radar player acts as a leader. The Stackelberg equilibrium strategy of radar, namely robust or minimax waveform-filter pair, for three different cases are taken into consideration. In the first case, Energy Constraint(EC) on transmit waveform is introduced, where we theoretically prove that the Stackelberg equilibrium is also the Nash equilibrium of the game, and propose Algorithm 1 to solve the optimal waveform-filter pair through convex optimization. Note that the EC cant meet the demands of radar transmitter due to high Peak Average to power Ratio(PAR) of the transmit waveform, thus Constant Modulus and Similarity Constraint(CM-SC) on waveform is considered in the second case, and Algorithm 2 is proposed to solve this problem, where we theoretically prove the existence of Nash equilibrium for its Semi-Definite Programming(SDP) relaxation form. And the optimal waveform-filter pair is solved by calculating the Nash equilibrium followed by the randomization schemes. In the third case,...
The existence of multipath brings extra looks of targets. This paper considers the extended target detection problem with a narrow band Multiple-Input Multiple-Output(MIMO) radar in the presence of multipath from the view of waveform-filter design. The goal is to maximize the worst-case Signal-to-Interference-pulse-Noise Ratio(SINR) at the receiver against the uncertainties of the target and multipath reflection coefficients. Moreover, a Constant Modulus Constraint(CMC) is imposed on the transmit waveform to meet the actual demands of radar. Two types of uncertainty sets are taken into consideration. One is the spherical uncertainty set. In this case, the max-min waveform-filter design problem belongs to the non-convex concave minimax problems, and the inner minimization problem is converted to a maximization problem based on Lagrange duality with the strong duality property. Then the optimal waveform is optimized with Semi-Definite Relaxation(SDR) and randomization schemes. Therefore, we call the optimization algorithm Duality Maximization Semi-Definite Relaxation(DMSDR). Additionally, we further study the case of annular uncertainty set which belongs to non-convex non-concave minimax problems. In order to address it, the SDR is utilized to approximate the inner minimization problem with a convex problem, then the inner minimization problem is reformulated as a maximization problem based on Lagrange duality. We resort to a sequential optimization procedure alternating between two SDR problems to optimize the covariance matrix of transmit waveform and receive filter, so we call the algorithm Duality Maximization Double Semi-Definite Relaxation(DMDSDR). The convergences of DMDSDR are proved theoretically. Finally, numerical results highlight the effectiveness and competitiveness of the proposed algorithms as well as the optimized waveform-filter pair.