Do you want to publish a course? Click here

Supernova 1987A: 3D Mixing and light curves for explosion models based on binary-merger progenitors

75   0   0.0 ( 0 )
 Added by Victor Utrobin P.
 Publication date 2021
  fields Physics
and research's language is English
 Authors V. P. Utrobin




Ask ChatGPT about the research

Six binary-merger progenitors of Supernova 1987A (SN 1987A) with properties close to those of the blue supergiant Sanduleak -69 202 are exploded by neutrino heating and evolved until long after shock breakout in three dimensions (3D), and continued for light-curve calculations in spherical symmetry. Our results confirm previous findings for single-star progenitors: (1) 3D neutrino-driven explosions with SN 1987A-like energies synthesize Ni-56 masses consistent with the radioactive light-curve tail; (2) hydrodynamic models mix hydrogen inward to minimum velocities below 40 km/s compatible with spectral observations of SN 1987A; and (3) for given explosion energy the efficiency of outward radioactive Ni-56 mixing depends mainly on high growth factors of Rayleigh-Taylor instabilities at the (C+O)/He and He/H composition interfaces and a weak interaction of fast plumes with the reverse shock occurring below the He/H interface. All binary-merger models possess presupernova radii matching the photometric radius of Sanduleak -69 202 and a structure of the outer layers allowing them to reproduce the observed initial luminosity peak in the first about 7 days. Models that mix about 0.5 Msun of hydrogen into the He-shell and exhibit strong outward mixing of Ni-56 with maximum velocities exceeding the 3000 km/s observed for the bulk of ejected Ni-56 have light-curve shapes in good agreement with the dome of the SN 1987A light curve. A comparative analysis of the best representatives of our 3D neutrino-driven explosion models of SN 1987A based on single-star and binary-merger progenitors reveals that only one binary model fulfills all observational constraints, except one.



rate research

Read More

284 - Victor Utrobin 2018
With the same method as used previously, we investigate neutrino-driven explosions of a larger sample of blue supergiant models. The larger sample includes three new presupernova stars. The results are compared with light-curve observations of the peculiar type IIP SN 1987A. The explosions were modeled in 3D with the neutrino-hydrodynamics code PROMETHEUS-HOTB, and light-curve calculations were performed in spherical symmetry with the radiation-hydrodynamics code CRAB. Our results confirm the basic findings of the previous work: 3D neutrino-driven explosions with SN 1987A-like energies synthesize an amount of Ni-56 that is consistent with the radioactive tail of the light curve. Moreover, the models mix hydrogen inward to minimum velocities below 400 km/s as required by spectral observations. Hydrodynamic simulations with the new progenitor models, which possess smaller radii than the older ones, show much better agreement between calculated and observed light curves in the initial luminosity peak and during the first 20 days. A set of explosions with similar energies demonstrated that a high growth factor of Rayleigh-Taylor instabilities at the (C+O)/He composition interface combined with a weak interaction of fast Rayleigh-Taylor plumes, where the reverse shock occurs below the He/H interface, provides a sufficient condition for efficient outward mixing of Ni-56 into the hydrogen envelope. This condition is realized to the required extent only in one of the older stellar models, which yielded a maximum velocity of around 3000 km/s for the bulk of ejected Ni-56, but failed to reproduce the helium-core mass of 6 Msun inferred from the absolute luminosity of the presupernova star. We conclude that none of the single-star progenitor models proposed for SN 1987A to date satisfies all constraints set by observations. (Abridged)
Upcoming high-cadence transient survey programmes will produce a wealth of observational data for Type Ia supernovae. These data sets will contain numerous events detected very early in their evolution, shortly after explosion. Here, we present synthetic light curves, calculated with the radiation hydrodynamical approach Stella for a number of different explosion models, specifically focusing on these first few days after explosion. We show that overall the early light curve evolution is similar for most of the investigated models. Characteristic imprints are induced by radioactive material located close to the surface. However, these are very similar to the signatures expected from ejecta-CSM or ejecta-companion interaction. Apart from the pure deflagration explosion models, none of our synthetic light curves exhibit the commonly assumed power-law rise. We demonstrate that this can lead to substantial errors in the determination of the time of explosion. In summary, we illustrate with our calculations that even with very early data an identification of specific explosion scenarios is challenging, if only photometric observations are available.
We perform three-dimensional hydrodynamic simulations of aspherical core-collapse supernovae focusing on the matter mixing in SN 1987A. The impacts of four progenitor (pre-supernova) models and parameterized aspherical explosions are investigated. The four pre-supernova models include a blue supergiant (BSG) model based on a slow merger scenario developed recently for the progenitor of SN 1987A (Urushibata et al. 2018). The others are a BSG model based on a single star evolution and two red supergiant (RSG) models. Among the investigated explosion (simulation) models, a model with the binary merger progenitor model and with an asymmetric bipolar-like explosion, which invokes a jetlike explosion, best reproduces constraints on the mass of high velocity $^{56}$Ni, as inferred from the observed [Fe II] line profiles. The advantage of the binary merger progenitor model for the matter mixing is the flat and less extended $rho ,r^3$ profile of the C+O core and the helium layer, which may be characterized by the small helium core mass. From the best explosion model, the direction of the bipolar explosion axis (the strongest explosion direction), the neutron star (NS) kick velocity, and its direction are predicted. Other related implications and future prospects are also given.
We present the SuperNova Explosion Code (SNEC), an open-source Lagrangian code for the hydrodynamics and equilibrium-diffusion radiation transport in the expanding envelopes of supernovae. Given a model of a progenitor star, an explosion energy, and an amount and distribution of radioactive nickel, SNEC generates the bolometric light curve, as well as the light curves in different broad bands assuming black body emission. As a first application of SNEC, we consider the explosions of a grid of 15 Msun (at zero-age main sequence) stars whose hydrogen envelopes are stripped to different extents and at different points in their evolution. The resulting light curves exhibit plateaus with durations of ~20-100 days if >~1.5-2 Msun of hydrogen-rich material is left and no plateau if less hydrogen-rich material is left. If these shorter plateau lengths are not seen for Type IIP supernovae in nature, it suggests that, at least for zero-age main sequence masses <~ 20 Msun, hydrogen mass loss occurs as an all or nothing process. This perhaps points to the important role binary interactions play in generating the observed mass-stripped supernovae (i.e., Type Ib/c events). These light curves are also unlike what is typically seen for Type IIL supernovae, arguing that simply varying the amount of mass loss cannot explain these events. The most stripped models begin to show double-peaked light curves similar to what is often seen for Type IIb supernovae, confirming previous work that these supernovae can come from progenitors that have a small amount of hydrogen and a radius of ~500 Rsun.
223 - H.-Thomas Janka , 2017
Fostered by the possibilities of multi-dimensional computational modeling, in particular the advent of three-dimensional (3D) simulations, our understanding of the neutrino-driven explosion mechanism of core-collapse supernovae (SNe) has experienced remarkable progress over the past decade. First self-consistent, first-principle models have shown successful explosions in 3D, and even failed cases may be cured by moderate changes of the microphysics inside the neutron star (NS), better grid resolution, or more detailed progenitor conditions at the onset of core collapse, in particular large-scale perturbations in the convective Si and O burning shells. 3D simulations have also achieved to follow neutrino-driven explosions continuously from the initiation of the blast wave, through the shock breakout from the progenitor surface, into the radioactively powered evolution of the SN, and towards the free expansion phase of the emerging remnant. Here we present results from such simulations, which form the basis for direct comparisons with observations of SNe and SN remnants in order to derive constraints on the still disputed explosion mechanism. It is shown that predictions based on hydrodynamic instabilities and mixing processes associated with neutrino-driven explosions yield good agreement with measured NS kicks, light-curve properties of SN 1987A, and asymmetries of iron and 44Ti distributions observed in SN 1987A and Cassiopeia A.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا