Do you want to publish a course? Click here

Non-linearity in the system of quasiparticles of a superconducting resonator

373   0   0.0 ( 0 )
 Added by Marco Vignati
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We observed a strong non-linearity in the system of quasiparticles of a superconducting aluminum resonator, due to the Cooper-pair breaking from the absorbed readout power. We observed both negative and positive feedback effects, controlled by the detuning of the readout frequency, which are able to alter the relaxation time of quasiparticles by a factor greater than 10. We estimate that the (70+/-5) % of the total non-linearity of the device is due to quasiparticles.



rate research

Read More

Vortices trapped in thin-film superconducting microwave resonators can have a significant influence on the resonator performance. Using a variable-linewidth geometry for a weakly coupled resonator we are able to observe the effects of a single vortex trapped in the resonator through field cooling. For resonant modes where the vortex is near a current antinode, the presence of even a single vortex leads to a measurable decrease in the quality factor and a dispersive shift of the resonant frequency. For modes with the vortex located at a current node, the presence of the vortex results in no detectable excess loss and, in fact, produces an increase in the quality factor. We attribute this enhancement to a reduction in the density of nonequilibrium quasiparticles in the resonator due to the suppressed gap from the vortex.
We present a detailed experimental and theoretical analysis of the dispersion and non-linear Kerr frequency shifts of plasma modes in a one-dimensional Josephson junction chain containing 500 SQUIDs in the regime of weak nonlinearity. The measured low-power dispersion curve agrees perfectly with the theoretical model if we take into account the Kerr renormalisation of the bare frequencies and the long-range nature of the island charge screening by a remote ground plane. We measured the self- and cross-Kerr shifts for the frequencies of the eight lowest modes in the chain. We compare the measured Kerr coefficients with theory and find good agreement.
In a superconductor absorption of photons with an energy below the superconducting gap leads to redistribution of quasiparticles over energy and thus induces a strong non-equilibrium quasiparticle energy distribution. We have measured the electrodynamic response, quality factor and resonant frequency, of a superconducting aluminium microwave resonator as a function of microwave power and temperature. Below 200 mK, both the quality factor and resonant frequency decrease with increasing microwave power, consistent with the creation of excess quasiparticles due to microwave absorption. Counterintuitively, above 200 mK, the quality factor and resonant frequency increase with increasing power. We demonstrate that the effect can only be understood by a non-thermal quasiparticle distribution.
180 - J. Wenner , Yi Yin , Erik Lucero 2012
Superconducting qubits probe environmental defects such as non-equilibrium quasiparticles, an important source of decoherence. We show that hot non-equilibrium quasiparticles, with energies above the superconducting gap, affect qubits differently from quasiparticles at the gap, implying qubits can probe the dynamic quasiparticle energy distribution. For hot quasiparticles, we predict a non-neligable increase in the qubit excited state probability P_e. By injecting hot quasiparticles into a qubit, we experimentally measure an increase of P_e in semi-quantitative agreement with the model and rule out the typically assumed thermal distribution.
Recent improvements in momentum resolution by a factor of 32 lead to qualitatively new ARPES results on the spectra of Bi2Sr2CaCu2O8 (Bi2212) along the (pi,pi) direction, where there is a node in the superconducting gap. With improved resolution, we now see the intrinsic lineshape, which indicates the presence of true quasiparticles at the Fermi momentum in the superconducting state, and lack thereof in the normal state. The region of momentum space probed here is relevant for charge transport, motivating a comparison of our results to conductivity measurements by infrared reflectivity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا