Do you want to publish a course? Click here

Evidence of a nonequilibrium distribution of quasiparticles in the microwave response of a superconducting aluminium resonator

124   0   0.0 ( 0 )
 Added by Pieter de Visser
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

In a superconductor absorption of photons with an energy below the superconducting gap leads to redistribution of quasiparticles over energy and thus induces a strong non-equilibrium quasiparticle energy distribution. We have measured the electrodynamic response, quality factor and resonant frequency, of a superconducting aluminium microwave resonator as a function of microwave power and temperature. Below 200 mK, both the quality factor and resonant frequency decrease with increasing microwave power, consistent with the creation of excess quasiparticles due to microwave absorption. Counterintuitively, above 200 mK, the quality factor and resonant frequency increase with increasing power. We demonstrate that the effect can only be understood by a non-thermal quasiparticle distribution.



rate research

Read More

We observed a strong non-linearity in the system of quasiparticles of a superconducting aluminum resonator, due to the Cooper-pair breaking from the absorbed readout power. We observed both negative and positive feedback effects, controlled by the detuning of the readout frequency, which are able to alter the relaxation time of quasiparticles by a factor greater than 10. We estimate that the (70+/-5) % of the total non-linearity of the device is due to quasiparticles.
Vortices trapped in thin-film superconducting microwave resonators can have a significant influence on the resonator performance. Using a variable-linewidth geometry for a weakly coupled resonator we are able to observe the effects of a single vortex trapped in the resonator through field cooling. For resonant modes where the vortex is near a current antinode, the presence of even a single vortex leads to a measurable decrease in the quality factor and a dispersive shift of the resonant frequency. For modes with the vortex located at a current node, the presence of the vortex results in no detectable excess loss and, in fact, produces an increase in the quality factor. We attribute this enhancement to a reduction in the density of nonequilibrium quasiparticles in the resonator due to the suppressed gap from the vortex.
We experimentally and numerically study a NbN superconducting stripline resonator integrated with a microbridge. We find that the response of the system to monochromatic excitation exhibits intermittency, namely, noise-induced jumping between coexisting steady-state and limit-cycle responses. A theoretical model that assumes piecewise linear dynamics yields partial agreement with the experimental findings.
149 - C. Janvier 2014
We describe and characterize a microwave setup to probe the Andreev levels of a superconducting atomic contact. The contact is part of a superconducting loop inductively coupled to a superconducting coplanar resonator. By monitoring the resonator reflection coefficient close to its resonance frequency as a function of both flux through the loop and frequency of a second tone we perform spectroscopy of the transition between two Andreev levels of highly transmitting channels of the contact. The results indicate how to perform coherent manipulation of these states.
The point-contact spectra of tantalum in the superconducting state, with $Ta$, $Cu$, and $Au$ counterelectrodes, have been studied. We discovered some new distinctive features, whose position on the $eV$ axis is determined by the critical power required for the injection of nonequilibriumquasiparticles. At this level of power the band gap $Delta $ decreases abruptly in the vicinity of the contact. A correction to the point-contact spectrum, with the sign opposite to that of the usual correction, arises in the region of phonon energies. The maxima in the $Ta$ spectrum become sharper and their position on the energy axis becomes stabilized near the values $e{{V}_{ph}}=7.0$, 11.3, 15.5, and 18 $meV$, which correspond to low phonon group velocities $partial omega /partial qsimeq 0$ in $Ta$. This is confirmed by the existence of corresponding flattenings on the dispersion relations $omega (q)$ of lattice vibrations. Slow phonons are created near the $N-S$ interface in quasiparticle recombination and relaxation processes and cause a decrease in $Delta $ and an increase in the differential resistance in the vicinity of $e{{V}_{ph}}$. An excess quasiparticle charge is accumulated in the region of the contact, producing a correction to the resistance, which decreases as $eV$, $T$, and $H$ increase. These mechanisms are particularly effective in dirty contacts, thus permitting phonon spectroscopy in the superconducting state even when the current flow occurs in a nearly thermal mode.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا