No Arabic abstract
The application of remaining useful life (RUL) prediction has taken great importance in terms of energy optimization, cost-effectiveness, and risk mitigation. The existing RUL prediction algorithms mostly constitute deep learning frameworks. In this paper, we implement LSTM and GRU models and compare the obtained results with a proposed genetically trained neural network. The current models solely depend on Adam and SGD for optimization and learning. Although the models have worked well with these optimizers, even little uncertainties in prognostics prediction can result in huge losses. We hope to improve the consistency of the predictions by adding another layer of optimization using Genetic Algorithms. The hyper-parameters - learning rate and batch size are optimized beyond manual capacity. These models and the proposed architecture are tested on the NASA Turbofan Jet Engine dataset. The optimized architecture can predict the given hyper-parameters autonomously and provide superior results.
Physical and cloud storage services are well-served by functioning and reliable high-volume storage systems. Recent observations point to hard disk reliability as one of the most pressing reliability issues in data centers containing massive volumes of storage devices such as HDDs. In this regard, early detection of impending failure at the disk level aids in reducing system downtime and reduces operational loss making proactive health monitoring a priority for AIOps in such settings. In this work, we introduce methods of extracting meaningful attributes associated with operational failure and of pre-processing the highly imbalanced health statistics data for subsequent prediction tasks using data-driven approaches. We use a Bidirectional LSTM with a multi-day look back period to learn the temporal progression of health indicators and baseline them against vanilla LSTM and Random Forest models to come up with several key metrics that establish the usefulness of and superiority of our model under some tightly defined operational constraints. For example, using a 15 day look back period, our approach can predict the occurrence of disk failure with an accuracy of 96.4% considering test data 60 days before failure. This helps to alert operations maintenance well in-advance about potential mitigation needs. In addition, our model reports a mean absolute error of 0.12 for predicting failure up to 60 days in advance, placing it among the state-of-the-art in recent literature.
For health prognostic task, ever-increasing efforts have been focused on machine learning-based methods, which are capable of yielding accurate remaining useful life (RUL) estimation for industrial equipment or components without exploring the degradation mechanism. A prerequisite ensuring the success of these methods depends on a wealth of run-to-failure data, however, run-to-failure data may be insufficient in practice. That is, conducting a substantial amount of destructive experiments not only is high costs, but also may cause catastrophic consequences. Out of this consideration, an enhanced RUL framework focusing on data self-generation is put forward for both non-cyclic and cyclic degradation patterns for the first time. It is designed to enrich data from a data-driven way, generating realistic-like time-series to enhance current RUL methods. First, high-quality data generation is ensured through the proposed convolutional recurrent generative adversarial network (CR-GAN), which adopts a two-channel fusion convolutional recurrent neural network. Next, a hierarchical framework is proposed to combine generated data into current RUL estimation methods. Finally, the efficacy of the proposed method is verified through both non-cyclic and cyclic degradation systems. With the enhanced RUL framework, an aero-engine system following non-cyclic degradation has been tested using three typical RUL models. State-of-art RUL estimation results are achieved by enhancing capsule network with generated time-series. Specifically, estimation errors evaluated by the index score function have been reduced by 21.77%, and 32.67% for the two employed operating conditions, respectively. Besides, the estimation error is reduced to zero for the Lithium-ion battery system, which presents cyclic degradation.
Arguably, intelligent agents ought to be able to discover their own questions so that in learning answers for them they learn unanticipated useful knowledge and skills; this departs from the focus in much of machine learning on agents learning answers to externally defined questions. We present a novel method for a reinforcement learning (RL) agent to discover questions formulated as general value functions or GVFs, a fairly rich form of knowledge representation. Specifically, our method uses non-myopic meta-gradients to learn GVF-questions such that learning answers to them, as an auxiliary task, induces useful representations for the main task faced by the RL agent. We demonstrate that auxiliary tasks based on the discovered GVFs are sufficient, on their own, to build representations that support main task learning, and that they do so better than popular hand-designed auxiliary tasks from the literature. Furthermore, we show, in the context of Atari 2600 videogames, how such auxiliary tasks, meta-learned alongside the main task, can improve the data efficiency of an actor-critic agent.
Online solvers for partially observable Markov decision processes have difficulty scaling to problems with large action spaces. Monte Carlo tree search with progressive widening attempts to improve scaling by sampling from the action space to construct a policy search tree. The performance of progressive widening search is dependent upon the action sampling policy, often requiring problem-specific samplers. In this work, we present a general method for efficient action sampling based on Bayesian optimization. The proposed method uses a Gaussian process to model a belief over the action-value function and selects the action that will maximize the expected improvement in the optimal action value. We implement the proposed approach in a new online tree search algorithm called Bayesian Optimized Monte Carlo Planning (BOMCP). Several experiments show that BOMCP is better able to scale to large action space POMDPs than existing state-of-the-art tree search solvers.
Deterministic-policy actor-critic algorithms for continuous control improve the actor by plugging its actions into the critic and ascending the action-value gradient, which is obtained by chaining the actors Jacobian matrix with the gradient of the critic with respect to input actions. However, instead of gradients, the critic is, typically, only trained to accurately predict expected returns, which, on their own, are useless for policy optimization. In this paper, we propose MAGE, a model-based actor-critic algorithm, grounded in the theory of policy gradients, which explicitly learns the action-value gradient. MAGE backpropagates through the learned dynamics to compute gradient targets in temporal difference learning, leading to a critic tailored for policy improvement. On a set of MuJoCo continuous-control tasks, we demonstrate the efficiency of the algorithm in comparison to model-free and model-based state-of-the-art baselines.