Do you want to publish a course? Click here

The Linearized Hellinger--Kantorovich Distance

222   0   0.0 ( 0 )
 Added by Matthew Thorpe
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we study the local linearization of the Hellinger--Kantorovich distance via its Riemannian structure. We give explicit expressions for the logarithmic and exponential map and identify a suitable notion of a Riemannian inner product. Samples can thus be represented as vectors in the tangent space of a suitable reference measure where the norm locally approximates the original metric. Working with the local linearization and the corresponding embeddings allows for the advantages of the Euclidean setting, such as faster computations and a plethora of data analysis tools, whilst still still enjoying approximately the descriptive power of the Hellinger--Kantorovich metric.



rate research

Read More

We study the barycenter of the Hellinger--Kantorovich metric over non-negative measures on compact, convex subsets of $mathbb{R}^d$. The article establishes existence, uniqueness (under suitable assumptions) and equivalence between a coupled-two-marginal and a multi-marginal formulation. We analyze the HK barycenter between Dirac measures in detail, and find that it differs substantially from the Wasserstein barycenter by exhibiting a local `clustering behaviour, depending on the length scale of the input measures. In applications it makes sense to simultaneously consider all choices of this scale, leading to a 1-parameter family of barycenters. We demonstrate the usefulness of this family by analyzing point clouds sampled from a mixture of Gaussians and inferring the number and location of the underlying Gaussians.
We develop a full theory for the new class of Optimal Entropy-Transport problems between nonnegative and finite Radon measures in general topological spaces. They arise quite naturally by relaxing the marginal constraints typical of Optimal Transport problems: given a couple of finite measures (with possibly different total mass), one looks for minimizers of the sum of a linear transport functional and two convex entropy functionals, that quantify in some way the deviation of the marginals of the transport plan from the assigned measures. As a powerful application of this theory, we study the particular case of Logarithmic Entropy-Transport problems and introduce the new Hellinger-Kantorovich distance between measures in metric spaces. The striking connection between these two seemingly far topics allows for a deep analysis of the geometric properties of the new geodesic distance, which lies somehow between the well-known Hellinger-Kakutani and Kantorovich-Wasserstein distances.
We discuss a new notion of distance on the space of finite and nonnegative measures which can be seen as a generalization of the well-known Kantorovich-Wasserstein distance. The new distance is based on a dynamical formulation given by an Onsager operator that is the sum of a Wasserstein diffusion part and an additional reaction part describing the generation and absorption of mass. We present a full characterization of the distance and its properties. In fact the distance can be equivalently described by an optimal transport problem on the cone space over the underlying metric space. We give a construction of geodesic curves and discuss their properties.
In reinforcement learning (RL), temporal abstraction still remains as an important and unsolved problem. The options framework provided clues to temporal abstraction in the RL, and the option-critic architecture elegantly solved the two problems of finding options and learning RL agents in an end-to-end manner. However, it is necessary to examine whether the options learned through this method play a mutually exclusive role. In this paper, we propose a Hellinger distance regularizer, a method for disentangling options. In addition, we will shed light on various indicators from the statistical point of view to compare with the options learned through the existing option-critic architecture.
Especially investigated in recent years, the Gaussian discord can be quantified by a distance between a given two-mode Gaussian state and the set of all the zero-discord two-mode Gaussian states. However, as this set consists only of product states, such a distance captures all the correlations (quantum and classical) between modes. Therefore it is merely un upper bound for the geometric discord, no matter which is the employed distance. In this work we choose for this purpose the Hellinger metric that is known to have many beneficial properties recommending it as a good measure of quantum behaviour. In general, this metric is determined by affinity, a relative of the Uhlmann fidelity with which it shares many important features. As a first step of our work, the affinity of a pair of $n$-mode Gaussian states is written. Then, in the two-mode case, we succeeded in determining exactly the closest Gaussian product state and computed the Gaussian discord accordingly. The obtained general formula is remarkably simple and becomes still friendlier in the significant case of symmetric two-mode Gaussian states. We then analyze in detail two special classes of two-mode Gaussian states of theoretical and experimental interest as well: the squeezed thermal states and the mode-mixed thermal ones. The former are separable under a well-known threshold of squeezing, while the latter are always separable. It is worth stressing that for symmetric states belonging to either of these classes, we find consistency between their geometric Hellinger discord and the originally defined discord in the Gaussian approach. At the same time, the Gaussian Hellinger discord of such a state turns out to be a reliable measure of the total amount of its cross correlations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا