No Arabic abstract
We develop a full theory for the new class of Optimal Entropy-Transport problems between nonnegative and finite Radon measures in general topological spaces. They arise quite naturally by relaxing the marginal constraints typical of Optimal Transport problems: given a couple of finite measures (with possibly different total mass), one looks for minimizers of the sum of a linear transport functional and two convex entropy functionals, that quantify in some way the deviation of the marginals of the transport plan from the assigned measures. As a powerful application of this theory, we study the particular case of Logarithmic Entropy-Transport problems and introduce the new Hellinger-Kantorovich distance between measures in metric spaces. The striking connection between these two seemingly far topics allows for a deep analysis of the geometric properties of the new geodesic distance, which lies somehow between the well-known Hellinger-Kakutani and Kantorovich-Wasserstein distances.
In this paper we study the local linearization of the Hellinger--Kantorovich distance via its Riemannian structure. We give explicit expressions for the logarithmic and exponential map and identify a suitable notion of a Riemannian inner product. Samples can thus be represented as vectors in the tangent space of a suitable reference measure where the norm locally approximates the original metric. Working with the local linearization and the corresponding embeddings allows for the advantages of the Euclidean setting, such as faster computations and a plethora of data analysis tools, whilst still still enjoying approximately the descriptive power of the Hellinger--Kantorovich metric.
We discuss a new notion of distance on the space of finite and nonnegative measures which can be seen as a generalization of the well-known Kantorovich-Wasserstein distance. The new distance is based on a dynamical formulation given by an Onsager operator that is the sum of a Wasserstein diffusion part and an additional reaction part describing the generation and absorption of mass. We present a full characterization of the distance and its properties. In fact the distance can be equivalently described by an optimal transport problem on the cone space over the underlying metric space. We give a construction of geodesic curves and discuss their properties.
We study the barycenter of the Hellinger--Kantorovich metric over non-negative measures on compact, convex subsets of $mathbb{R}^d$. The article establishes existence, uniqueness (under suitable assumptions) and equivalence between a coupled-two-marginal and a multi-marginal formulation. We analyze the HK barycenter between Dirac measures in detail, and find that it differs substantially from the Wasserstein barycenter by exhibiting a local `clustering behaviour, depending on the length scale of the input measures. In applications it makes sense to simultaneously consider all choices of this scale, leading to a 1-parameter family of barycenters. We demonstrate the usefulness of this family by analyzing point clouds sampled from a mixture of Gaussians and inferring the number and location of the underlying Gaussians.
In 2017, Boaz Klartag obtained a new result in differential geometry on the existence of affine hemisphere of elliptic type. In his approach, a surface is associated with every a convex function $Phi$ : R^n $rightarrow$ (0, +$infty$) and the condition for the surface to be an affine hemisphere involves the 2-moment measure of $Phi$ (a particular case of q-moment measures, i.e measures of the form ($ abla$$Phi$) # ($Phi$^{--(n+q)}) for q > 0). In Klartags paper, q-moment measures are studied through a variational method requiring to minimize a functional among convex functions, which is studied using the Borell-Brascamp-Lieb inequality. In this paper, we attack the same problem through an optimal transport approach, since the convex function $Phi$ is a Kantorovich potential (as already done for moment measures in a previous paper). The variational problem in this new approach becomes the minimization of a local functional and a transport cost among probability measures and the optimizer turns out to be of the form $rho$ = $Phi$^{--(n+q)}.
We present and study novel optimal control problems motivated by the search for photovoltaic materials with high power-conversion efficiency. The material must perform the first step: convert light (photons) into electronic excitations. We formulate various desirable properties of the excitations as mathematical control goals at the Kohn-Sham-DFT level of theory, with the control being given by the nuclear charge distribution. We prove that nuclear distributions exist which give rise to optimal HOMO-LUMO excitations, and present illustrative numerical simulations for 1D finite nanocrystals. We observe pronounced goal-dependent features such as large electron-hole separation, and a hierarchy of length scales: internal HOMO and LUMO wavelengths $<$ atomic spacings $<$ (irregular) fluctuations of the doping profiles $<$ system size.