Do you want to publish a course? Click here

Rotation of the convective core in $gamma$ Dor stars measured by dips in period spacings of g modes coupled with inertial modes

115   0   0.0 ( 0 )
 Added by Hideyuki Saio
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The relation of period spacing ($Delta P$) versus period ($P$) of dipole prograde g modes is known to be useful to measure rotation rates in the g-mode cavity of rapidly rotating $gamma$ Dor and slowly pulsating B (SPB) stars. In a rapidly rotating star, an inertial mode in the convective core can resonantly couple with g modes propagative in the surrounding radiative region. The resonant coupling causes a dip in the $P$-$Delta P$ relation, distinct from the modulations due to the chemical composition gradient. Such a resonance dip in $Delta P$ of prograde dipole g modes appears around a frequency corresponding to a spin parameter $2f_{rm rot}{rm(cc)}/ u_{rm co-rot} sim 8-11$ with $f_{rm rot}$(cc) being the rotation frequency of the convective core and $ u_{rm co-rot}$ the pulsation frequency in the co-rotating frame. The spin parameter at the resonance depends somewhat on the extent of core overshooting, central hydrogen abundance, and other stellar parameters. We can fit the period at the observed dip with the prediction from prograde dipole g modes of a main-sequence model, allowing the convective core to rotate differentially from the surrounding g-mode cavity. We have performed such fittings for 16 selected $gamma$ Dor stars having well defined dips, and found that the majority of $gamma$ Dor stars we studied rotate nearly uniformly, while convective cores tend to rotate slightly faster than the g-mode cavity in less evolved stars.



rate research

Read More

The Kepler and TESS missions delivered high-precision, long-duration photometric time series for hundreds of main-sequence stars with gravito-inertial (g) pulsation modes. This high precision allows us to evaluate increasingly detailed theoretical stellar models. Recent theoretical work extended the traditional approximation of rotation (TAR), a framework to evaluate the effect of the Coriolis acceleration on g-modes, to include the effects of the centrifugal acceleration in the approximation of slightly deformed stars, which so far had mostly been neglected in asteroseismology. This extension of the TAR was conceived by rederiving the TAR in a centrifugally deformed, spheroidal coordinate system. We explore the effect of the centrifugal acceleration on g modes and assess its detectability in space-based photometry. We implement the new framework to calculate the centrifugal deformation of precomputed 1D spherical stellar structure models and compute the corresponding g-mode frequencies, assuming uniform rotation. The framework is evaluated for a grid of stellar structure models covering a relevant parameter space for observed g-mode pulsators. The centrifugal acceleration modifies the effect of the Coriolis acceleration on g modes, narrowing the equatorial band in which they are trapped. Furthermore, the centrifugal acceleration causes the pulsation periods and period spacings of the most common g modes (prograde dipole modes and r modes) to increase with values similar to the observational uncertainties in Kepler and TESS data. The effect of the centrifugal acceleration on g~modes is formally detectable in modern space photometry. Implementation of the new theoretical framework in stellar structure and pulsation codes will allow for more precise asteroseismic modelling of centrifugally deformed stars, to assess its effect on mode excitation, -trapping and -damping.
The power of asteroseismology relies on the capability of global oscillations to infer the stellar structure. For evolved stars, we benefit from unique information directly carried out by mixed modes that probe their radiative cores. This third article of the series devoted to mixed modes in red giants focuses on their coupling factors that remained largely unexploited up to now. With the measurement of the coupling factors, we intend to give physical constraints on the regions surrounding the radiative core and the hydrogen-burning shell of subgiants and red giants. A new method for measuring the coupling factor of mixed modes is set up. It is derived from the method recently implemented for measuring period spacings. It runs in an automated way so that it can be applied to a large sample of stars. Coupling factors of mixed modes were measured for thousands of red giants. They show specific variation with mass and evolutionary stage. Weak coupling is observed for the most evolved stars on the red giant branch only; large coupling factors are measured at the transition between subgiants and red giants, as well as in the red clump. The measurement of coupling factors in dipole mixed modes provides a new insight into the inner interior structure of evolved stars. While the large frequency separation and the asymptotic period spacings probe the envelope and the core, respectively, the coupling factor is directly sensitive to the intermediate region in between and helps determining its extent. Observationally, the determination of the coupling factor is a prior to precise fits of the mixed-mode pattern, and can now be used to address further properties of the mixed-mode pattern, as the signature of the buoyancy glitches and the core rotation.
75 - E. Fossat 2017
We present the identification of very low frequency g modes in the asymptotic regime and two important parameters that have long been waited for: the core rotation rate, and the asymptotic equidistant period spacing of these g modes. The GOLF instrument on board the SOHO space observatory has provided two decades of full-disk helioseismic data. In the present study, we search for possible collective frequency modulations that are produced by periodic changes in the deep solar structure. Such modulations provide access to only very low frequency g modes, thus allowing statistical methods to take advantage of their asymptotic properties. For oscillatory periods in the range between 9 and nearly 48 hours, almost 100 g modes of spherical harmonic degree 1 and more than 100 g modes of degree 2 are predicted. They are not observed individually, but when combined, they unambiguouslyprovide their asymptotic period equidistance and rotational splittings, in excellent agreement with the requirements of the asymptotic approximations. Previously, p-mode helioseismology allowed the g-mode period equidistance parameter $P_0$ to be bracketed inside a narrow range, between approximately 34 and 35 minutes. Here, $P_0$ is measured to be 34 min 01 s, with a 1 s uncertainty. The previously unknown g-mode splittings have now been measured from a non-synodic reference with very high accuracy, and they imply a mean weighted rotation of 1277 $pm$ 10 nHz (9-day period) of their kernels, resulting in a rapid rotation frequency of 1644 $pm$ 23 nHz (period of one week) of the solar core itself, which is a factor 3.8 $pm$ 0.1 faster than the rotation of the radiative envelope. The g modes are known to be the keys to a better understanding of the structure and dynamics of the solar core. Their detection with these precise parameters will certainly stimulate a new era of research in this field.
When the core hydrogen is exhausted during stellar evolution, the central region of a star contracts and the outer envelope expands and cools, giving rise to a red giant, in which convection occupies a large fraction of the star. Conservation of angular momentum requires that the cores of these stars rotate faster than their envelopes, and indirect evidence supports this. Information about the angular momentum distribution is inaccessible to direct observations, but it can be extracted from the effect of rotation on oscillation modes that probe the stellar interior. Here, we report the detection of non-rigid rotation in the interiors of red-giant stars by exploiting the rotational frequency splitting of recently detected mixed modes. We demonstrate an increasing rotation rate from the surface of the star to the stellar core. Comparing with theoretical stellar models, we conclude that the core must rotate at least ten times faster than the surface. This observational result confirms the theoretical prediction of a steep gradient in the rotation profile towards the deep stellar interior.
Star-planet tidal interactions may result in the excitation of inertial waves in the convective region of stars. In low-mass stars, their dissipation plays a prominent role in the long-term orbital evolution of short-period planets. Turbulent convection can sustain differential rotation in their envelope, with an equatorial acceleration (as in the Sun) or deceleration, which can modify the waves propagation properties. We explore in this first paper the general propagation properties of free linear inertial waves in a differentially rotating homogeneous fluid inside a spherical shell. We assume that the angular velocity background flow depends on the latitudinal coordinate only, close to what is expected in the external convective envelope of low-mass stars. We use i) an analytical approach in the inviscid case to get the dispersion relation, from which we compute the characteristic trajectories along which energy propagates. This allows us to study the existence of attractor cycles and infer the different families of inertial modes; ii) high-resolution numerical calculations based on a spectral method for the viscous problem. We find that modes that propagate in the whole shell (D modes) behave the same way as with solid-body rotation. However, another family of inertial modes exists (DT modes), which can propagate only in a restricted part of the convective zone. Our study shows that they are less common than D modes and that the characteristic rays and shear layers often focus towards a wedge - or point-like attractor. More importantly, we find that for non-axisymmetric oscillation modes, shear layers may cross a corotation resonance with a local accumulation of kinetic energy. Their damping rate scales very differently from what we obtain for standard D modes and we show an example where it is independent of viscosity (Ekman number) in the astrophysical regime in which it is small.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا