No Arabic abstract
This paper contains suggestions for experiments with usage of the Spin Physics Detector (SPD) at the first stage of the SPD NICA Programme developing at JINR. Double polarized pp-, dd- and pd- collisions at c.m.s. NN energies of 3.4-10 GeV, which will be accessible at the initial stage of experiments, allow one to study spin dependence of the NN interaction, search for multiquark states at double strangeness, charm and beauty thresholds, study the short-range structure of the deuteron. Double polarized pd scattering offer a possibility to test the Standard Model through the search for T-invariance violation.
The SPD experiment at the future NICA collider at JINR (Dubna, Russia) aims to investigate the nucleon spin structure and polarization phenomena in collisions of longitudinally and transversely polarized protons and deuterons at $sqrt{s}$ up to 27 GeV and luminosity up to 10$^{32}$ cm$^{-2}$ s$^{-1}$. Measurement of asymmetries in the Drell-Yan pairs, charmonium and prompt photon production can provide an access to the full set of leading twist TMD PDFs in nucleons. The experimental setup is planned as a universal 4$pi$ detector for a wide range of physics tasks.
We propose to perform measurements of asymmetries of the Drell-Yan (DY) pairs production in collisions of non-polarized, longitudinally and transversally polarized protons and deuterons which provide an access to all leading twist collinear and TMD PDFs of quarks and anti-quarks in nucleons. The measurements of asymmetries in production of J/Psi and direct photons will be performed as well simultaneously with DY using dedicated triggers. The set of these measurements will supply complete information for tests of the quark-parton model of nucleons at the QCD twist-two level with minimal systematic errors.
We propose a unified new approach to describe polarized and unpolarized quark distributions in the proton based on the gauge-gravity correspondence, light-front holography, and the generalized Veneziano model. We find that the spin-dependent quark distributions are uniquely determined in terms of the unpolarized distributions by chirality separation without the introduction of additional free parameters. The predictions are consistent with existing experimental data and agree with perturbative QCD constraints at large longitudinal momentum $x$. In particular, we predict the sign reversal of the polarized down-quark distribution in the proton at $x=0.8pm0.03$, a key property of nucleon substructure which will be tested very soon in upcoming experiments.
Chiral-odd gluon transversity distribution could shed light on a new aspect of hadron physics. Although we had much progress recently on quark transversity distributions, there is no experimental measurement on the gluon transversity. The gluon trasversity does not exist in the spin-1/2 nucleons and it exists in the spin-1 deuteron. Therefore, it could probe new hadron physics in the deuteron beyond the basic bound system of a proton and a neutron because the nucleons cannot contribute directly. Here, we explain that the gluon transversity can be measured at hadron accelerator facilities, such as Fermilab and NICA, in addition to charged-lepton scattering measurements at lepton accelerator facilities by showing cross sections of the proton-deuteron Drell-Yan process as an example.
The Spin Physics Detector (SPD) is a future multipurpose experiment foreseen to run at the NICA collider, which is currently under construction at the Joint Institute for Nuclear Research (JINR, Dubna, Russia). The physics program of the experiment is based on collisions of longitudinally and transversely polarized protons and deuterons at $sqrt{s}$ up to 27 GeV and luminosity up to 10$^{32}$ cm$^{-2}$ s$^{-1}$. The SPD will operate as a universal facility for comprehensive study of unpolarized and polarized gluon content of the nucleon, using different complementary probes such as: charmonia, open charm, and prompt photon production processes. The aim of this work is to make a thorough review of the physics objectives that can potentially be addressed at the SPD, underlining related theoretical aspects and discussing relevant experimental results when available. Among different pertinent phenomena particular attention is drawn to the study of the gluon helicity, gluon Sivers and Boer-Mulders functions in the nucleon, as well as the gluon transversity distribution in the deuteron, via the measurement of specific single and double spin asymmetries.