Do you want to publish a course? Click here

An improved upper bound on self-dual codes over finite fields $GF(11), GF(19)$, and $GF(23)$

69   0   0.0 ( 0 )
 Added by Whan-Hyuk Choi
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This paper gives new methods of constructing {it symmetric self-dual codes} over a finite field $GF(q)$ where $q$ is a power of an odd prime. These methods are motivated by the well-known Pless symmetry codes and quadratic double circulant codes. Using these methods, we construct an amount of symmetric self-dual codes over $GF(11)$, $GF(19)$, and $GF(23)$ of every length less than 42. We also find 153 {it new} self-dual codes up to equivalence: they are $[32, 16, 12]$, $[36, 18, 13]$, and $[40, 20,14]$ codes over $GF(11)$, $[36, 18, 14]$ and $[40, 20, 15]$ codes over $GF(19)$, and $[32, 16, 12]$, $[36, 18, 14]$, and $[40, 20, 15]$ codes over $GF(23)$. They all have new parameters with respect to self-dual codes. Consequently, we improve bounds on the highest minimum distance of self-dual codes, which have not been significantly updated for almost two decades.



rate research

Read More

We introduce a consistent and efficient method to construct self-dual codes over $GF(q)$ with symmetric generator matrices from a self-dual code over $GF(q)$ of smaller length where $q equiv 1 pmod 4$. Using this method, we improve the best-known minimum weights of self-dual codes, which have not significantly improved for almost two decades. We focus on a class of self-dual codes, including double circulant codes. Using our method, called a `symmetric building-up construction, we obtain many new self-dual codes over $GF(13)$ and $GF(17)$ and improve the bounds of best-known minimum weights of self-dual codes of lengths up to 40. Besides, we compute the minimum weights of quadratic residue codes that were not known before. These are: a [20,10,10] QR self-dual code over $GF(23)$, two [24,12,12] QR self-dual codes over $GF(29)$ and $GF(41)$, and a [32,12,14] QR self-dual codes over $GF(19)$. They have the highest minimum weights so far.
98 - Xiaoqiang Wang 2021
BCH codes are an interesting class of cyclic codes due to their efficient encoding and decoding algorithms. In many cases, BCH codes are the best linear codes. However, the dimension and minimum distance of BCH codes have been seldom solved. Until now, there have been few results on BCH codes over $gf(q)$ with length $q^m+1$, especially when $q$ is a prime power and $m$ is even. The objective of this paper is to study BCH codes of this type over finite fields and analyse their parameters. The BCH codes presented in this paper have good parameters in general, and contain many optimal linear codes.
Four recursive constructions of permutation polynomials over $gf(q^2)$ with those over $gf(q)$ are developed and applied to a few famous classes of permutation polynomials. They produce infinitely many new permutation polynomials over $gf(q^{2^ell})$ for any positive integer $ell$ with any given permutation polynomial over $gf(q)$. A generic construction of permutation polynomials over $gf(2^{2m})$ with o-polynomials over $gf(2^m)$ is also presented, and a number of new classes of permutation polynomials over $gf(2^{2m})$ are obtained.
In this paper, we produce new classes of MDS self-dual codes via (extended) generalized Reed-Solomon codes over finite fields of odd characteristic. Among our constructions, there are many MDS self-dual codes with new parameters which have never been reported. For odd prime power $q$ with $q$ square, the total number of lengths for MDS self-dual codes over $mathbb{F}_q$ presented in this paper is much more than those in all the previous results.
In this work we describe an efficient implementation of a hierarchy of algorithms for the decomposition of dense matrices over the field with two elements (GF(2)). Matrix decomposition is an essential building block for solving dense systems of linear and non-linear equations and thus much research has been devoted to improve the asymptotic complexity of such algorithms. In this work we discuss an implementation of both well-known and improved algorithms in the M4RI library. The focus of our discussion is on a new variant of the M4RI algorithm - denoted MMPF in this work -- which allows for considerable performance gains in practice when compared to the previously fastest implementation. We provide performance figures on x86_64 CPUs to demonstrate the viability of our approach.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا