No Arabic abstract
We investigate a one-dimensional quantum emitter chain where transport of excitations and correlations takes place via nearest neighbor, dipole-dipole interactions. In the presence of collective radiative emission, we show that a phase imprinting wavepacket initialization procedure can lead to subradiant transport and can preserve quantum correlations. In the context of cavity mediated transport, where emitters are coupled to a common delocalized optical mode, we analyze the effect of frequency disorder and nonidentical photon-emitter couplings on excitation transport.
We explore excitation transport within a one-dimensional chain of atoms where the atomic transition dipoles are coupled to the free radiation field. When the atoms are separated by distances smaller or comparable to the wavelength of the transition, the exchange of virtual photons leads to the transport of the excitation through the lattice. Even though this is a strongly dissipative system, we find that the transport is subradiant, that is, the excitation lifetime is orders of magnitude longer than the one of an individual atom. In particular, we show that a subspace of the spectrum is formed by subradiant states with a linear dispersion relation, which allows for the dispersionless transport of wave packets over long distances with virtually zero decay rate. Moreover, the group velocity and direction of the transport can be controlled via an external uniform magnetic field while preserving its subradiant character. The simplicity and versatility of this system, together with the robustness of subradiance against disorder, makes it relevant for a range of applications such as lossless energy transport and long-time light storage.
We study the dynamics of a single excitation coherently shared amongst an ensemble of atoms and coupled to a one-dimensional wave guide. The coupling between the matter and the light field gives rise to collective phenomena such as superradiant states with an enhanced initial decay rate, but also to the coherent exchange of the excitation between the atoms. We find that the competition between the two phenomena provides a characteristic dynamics for the decay of the excitations, and remarkably exhibits an algebraic behavior, instead of the expected standard exponential one, for a large number of atoms. The analysis is first performed for a chiral waveguide, where the problem can be solved analytically, and then is extended to the bidirectional waveguide.
Considerable efforts have been recently devoted to combining ultracold atoms and nanophotonic devices to obtain not only better scalability and figures of merit than in free-space implementations, but also new paradigms for atom-photon interactions. Dielectric waveguides offer a promising platform for such integration because they enable tight transverse confinement of the propagating light, strong photon-atom coupling in single-pass configurations and potentially long-range atom-atom interactions mediated by the guided photons. However, the preparation of non-classical quantum states in such atom-waveguide interfaces has not yet been realized. Here, by using arrays of individual caesium atoms trapped along an optical nanofibre, we observe a single collective atomic excitation coupled to a nanoscale waveguide. The stored collective entangled state can be efficiently read out with an external laser pulse, leading to on-demand emission of a single photon into the guided mode. We characterize the emitted single photon via the suppression of the two-photon component and confirm the single character of the atomic excitation, which can be retrieved with an efficiency of about 25%. Our results demonstrate a capability that is essential for the emerging field of waveguide quantum electrodynamics, with applications to quantum networking, quantum nonlinear optics and quantum many-body physics.
Photonic condensates are complex systems exhibiting phase transitions due to the interaction with their molecular environment. Given the macroscopic number of molecules that form a reservoir of excitations, numerical simulations are expensive, even for systems with few cavity modes. We present a systematic construction of molecular excitation profiles with a clear hierarchical ordering, such that only modes in the lowest order in the hierarchy directly affect the cavity photon dynamics. In addition to a substantial gain in computational efficiency for simulations of photon dynamics, the explicit spatial shape of the mode profiles offers a clear physical insight into the competition among the cavity modes for access to molecular excitations.
We investigate how collective behaviors of vibrations such as cooperativity and interference can enhance energy transfer in a nontrivial way, focusing on an example of a donor-bridge-acceptor trimeric chromophore system coupled to two vibrational degrees of freedom. Employing parameters selected to provide an overall uphill energy transfer from donor to acceptor, we use numerical calculations of dynamics in a coupled exciton-vibration basis, together with perturbation-based analytics and calculation of vibronic spectra, we identify clear spectral features of single- and multi-phonon vibrationally-assisted energy transfer (VAET) dynamics, where the latter include up to six-phonon contributions. We identify signatures of vibrational cooperation and interference that provide enhancement of energy transfer relative to that obtained from VAET with a single vibrational mode. We observe a phononic analogue of two-photon absorption, as well as a novel heteroexcitation mechanism in which a single phonon gives rise to simultaneous excitation of both the trimeric system and the vibrational degrees of freedom. The impact of vibrations and of the one- and two-phonon VAET processes on the energy transfer are seen to be quite different in the weak and strong site-vibration coupling regimes. In the weak coupling regime, two-phonon processes dominate, whereas in the strong coupling regime up to six-phonon VAET processes can be induced. The VAET features are seen to be enhanced with increasing temperature and site-vibration coupling strength, and are reduced in the presence of dissipation. We analyze the dependence of these phenomena on the explicit form of the chromophore-vibration couplings, with comparison of VAET spectra for local and non-local couplings.