Do you want to publish a course? Click here

HI intensity mapping with the MIGHTEE survey: power spectrum estimates

172   0   0.0 ( 0 )
 Added by Sourabh Paul
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Intensity mapping (IM) with neutral hydrogen is a promising avenue to probe the large scale structure of the Universe. In this paper, we demonstrate that using the 64-dish MeerKAT radio telescope as a connected interferometer, it is possible to make a statistical detection of HI in the post-reionization Universe. With the MIGHTEE (MeerKAT International GHz Tiered Extragalactic Exploration) survey project observing in the L-band ($856 < u < 1712$ MHz, $z < 0.66$), we can achieve the required sensitivity to measure the HI IM power spectrum on quasi-linear scales, which will provide an important complementarity to the single-dish IM MeerKAT observations. We present a purpose-built simulation pipeline that emulates the MIGHTEE observations and forecast the constraints that can be achieved on the HI power spectrum at $z = 0.27$ for $k > 0.3$ $rm{Mpc}^{-1}$ using the foreground avoidance method. We present the power spectrum estimates with the current simulation on the COSMOS field that includes contributions from HI, noise and point source models constructed from the observed MIGHTEE data. The results from our textit{visibility} based pipeline are in qualitative agreement to the already available MIGHTEE data. This paper demonstrates that MeerKAT can achieve very high sensitivity to detect HI with the full MIGHTEE survey on quasi-linear scales (signal-to-noise ratio $> 7$ at $k=0.49$ $rm{Mpc}^{-1}$) which are instrumental in probing cosmological quantities such as the spectral index of fluctuation, constraints on warm dark matter, the quasi-linear redshift space distortions and the measurement of the HI content of the Universe up to $zsim 0.5$.



rate research

Read More

We discuss the detectability of large-scale HI intensity fluctuations using the FAST telescope. We present forecasts for the accuracy of measuring the Baryonic Acoustic Oscillations and constraining the properties of dark energy. The FAST $19$-beam L-band receivers ($1.05$--$1.45$ GHz) can provide constraints on the matter power spectrum and dark energy equation of state parameters ($w_{0},w_{a}$) that are comparable to the BINGO and CHIME experiments. For one year of integration time we find that the optimal survey area is $6000,{rm deg}^2$. However, observing with larger frequency coverage at higher redshift ($0.95$--$1.35$ GHz) improves the projected errorbars on the HI power spectrum by more than $2~sigma$ confidence level. The combined constraints from FAST, CHIME, BINGO and Planck CMB observations can provide reliable, stringent constraints on the dark energy equation of state.
HI intensity mapping is a new observational technique to survey the large-scale structure of matter using the 21 cm emission line of atomic hydrogen (HI). In this work, we simulate BINGO (BAO from Integrated Neutral Gas Observations) and SKA (Square Kilometre Array) phase-1 dish array operating in auto-correlation mode. For the optimal case of BINGO with no foregrounds, the combination of the HI angular power spectra with Planck results allows $w$ to be measured with a precision of $4%$, while the combination of the BAO acoustic scale with Planck gives a precision of $7%$. We consider a number of potentially complicating effects, including foregrounds and redshift dependent bias, which increase the uncertainty on $w$ but not dramatically; in all cases the final uncertainty is found to be $Delta w < 8%$ for BINGO. For the combination of SKA-MID in auto-correlation mode with Planck, we find that, in ideal conditions, $w$ can be measured with a precision of $4%$ for the redshift range $0.35 < z < 3$ (i.e., for the bandwidth of $Delta u = [350, 1050]$ MHz) and $2%$ for $0 < z < 0.49$ (i.e., $Delta u = [950, 1421]$ MHz). Extending the model to include the sum of neutrino masses yields a $95%$ upper limit of $sum m_ u < 0.24$ eV for BINGO and $sum m_ u < 0.08$ eV for SKA phase 1, competitive with the current best constraints in the case of BINGO and significantly better than them in the case of SKA.
We assess the performance of the multipole expansion formalism in the case of single-dish HI intensity mapping, including instrumental and foreground removal effects. This formalism is used to provide MCMC forecasts for a range of HI and cosmological parameters, including redshift space distortions and the Alcock-Paczynski effect. We first determine the range of validity of our power spectrum modelling by fitting to simulation data, concentrating on the monopole, quadrupole, and hexadecapole contributions. We then show that foreground subtraction effects can lead to severe biases in the determination of cosmological parameters, in particular the parameters relating to the transverse BAO rescaling, the growth rate and the HI bias ($alpha_perp$, $overline{T}_text{HI} fsigma_8$, and $overline{T}_text{HI} b_text{HI} sigma_8$, respectively). We attempt to account for these biases by constructing a 2-parameter foreground modelling prescription, and find that our prescription leads to unbiased parameter estimation at the expense of increasing the estimated uncertainties on cosmological parameters. In addition, we confirm that instrumental and foreground removal effects significantly impact the theoretical covariance matrix, and cause the covariance between different multipoles to become non-negligible. Finally, we show the effect of including higher-order multipoles in our analysis, and how these can be used to investigate the presence of instrumental and systematic effects in HI intensity mapping data.
384 - Alkistis Pourtsidou 2017
We explore the possibility of performing an HI intensity mapping survey with the South African MeerKAT radio telescope, which is a precursor to the Square Kilometre Array (SKA). We propose to use cross-correlations between the MeerKAT intensity mapping survey and optical galaxy surveys, in order to mitigate systematic effects and produce robust cosmological measurements. Our forecasts show that precise measurements of the HI signal can be made in the near future. These can be used to constrain HI and cosmological parameters across a wide range of redshift.
We present the HI emission project within the MIGHTEE survey, currently being carried out with the newly commissioned MeerKAT radio telescope. This is one of the first deep, blind, medium-wide interferometric surveys for neutral hydrogen (HI) ever undertaken, extending our knowledge of HI emission to z=0.6. The science goals of this medium-deep, medium-wide survey are extensive, including the evolution of the neutral gas content of galaxies over the past 5 billion years. Simulations predict nearly 3000 galaxies over 0<z<0.4 will be detected directly in HI, with statistical detections extending to z=0.6. The survey allows us to explore HI as a function of galaxy environment, with massive groups and galaxy clusters within the survey volume. Additionally, the area is large enough to contain as many as 50 local galaxies with HI mass $<10^8$ Msun, which allows us to study the low-mass galaxy population. The 20 deg$^2$ main survey area is centred on fields with exceptional multi-wavelength ancillary data, with photometry ranging from optical through far-infrared wavelengths, supplemented with multiple spectroscopic campaigns. We describe here the survey design and the key science goals. We also show first results from the Early Science observations, including kinematic modelling of individual sources, along with the redshift, HI, and stellar mass ranges of the sample to date.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا