Do you want to publish a course? Click here

Higgs boson self-coupling constraints from single Higgs, double Higgs and Electroweak measurements

227   0   0.0 ( 0 )
 Added by Biagio Di Micco dr.
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We set constraints on the trilinear Higgs boson self-coupling, $lambda_3$, by combining the information coming from the $W$ mass and leptonic effective Weinberg angle, electroweak precision observables, with the single Higgs boson analyses targeting the $gamma gamma,, ZZ^*,, WW^*, ,tau^+ tau^-$ and $bar{b} b$ decay channels and the double Higgs boson analyses in the $bbar{b}bbar{b}, , bbar{b}b tau^+ tau^-$ and $bbar{b}b gamma gamma$ decay channels, performed by the ATLAS collaboration. With the assumption that the new physics affects only the Higgs potential, values outside the interval $ -1.8, lambda_3^{rm SM} < lambda_3 < 9.2 , lambda_3^{rm SM}$ are excluded at $95%$ confidence level. With respect to similar analyses that do not include the information coming from the electroweak precision observables our analysis shows a stronger constraint on both positive and negative values of $lambda_3$.



rate research

Read More

The Compact Linear Collider (CLIC) is a future electron-positron collider that will allow measurement of the trilinear Higgs self-coupling in double Higgs boson events produced at its high-energy stages with collision energies of $sqrt{s}$ = 1.5 and 3 TeV. The sensitivity to the Higgs self-coupling is driven by the measurements of the cross section and the invariant mass distribution of the Higgs-boson pair in the W-boson fusion process, e$^+$e$^-to$HH$ u_e bar{ u}_e$. It is enhanced by including the cross-section measurement of ZHH production at 1.5 TeV. The expected sensitivity of CLIC for Higgs pair production through W-boson fusion is studied for the decay channels bbbb and bbWW using full detector simulation including all relevant backgrounds. With an integrated luminosity of $mathcal{L}$ = 5 ab$^{-1}$ at $sqrt{s}$ = 3 TeV, CLIC will be able to measure the trilinear Higgs self-coupling with a relative uncertainty of $-8,%$ and $+11,%$ at $68,%$ C.L., assuming the Standard Model.
In this work we explore the sensitivity to the Higgs self-coupling $lambda$ in the production of two Higgs bosons via vector boson scattering at the LHC. Although these production channels, concretely $W^+W^- to HH$ and $ ZZ to HH$, have lower rates than gluon-gluon fusion, they benefit from being tree level processes, being independent of top physics and having very distinctive kinematics that allow to obtain very clean experimental signatures. This makes them competitive channels concerning the sensitivity to the Higgs self-coupling. In order to give predictions for the sensitivity to this coupling, we first study the role of $lambda$ at the subprocess level, both in and beyond the Standard Model, to move afterwards to the LHC scenario. We characterize the $ppto HHjj$ case first and then provide quantitative results for the values of $lambda$ that can be probed at the LHC in vector boson scattering processes after considering the Higgs boson decays. We focus mainly in $ppto bbar{b}bbar{b}jj$, since it has the largest signal rates, and also comment on the potential of other channels, such as $ppto bbar{b}gammagamma jj$, as they lead to cleaner, although smaller, signals. Our whole study is performed for a center of mass energy of $sqrt{s}=14$ TeV and for various future expected LHC luminosities.
We consider the triple coupling of the Higgs boson in the context of the gauge-Higgs unification scenario. We show that the triple coupling of the Higgs boson in this scenario generically deviates from SM prediction since the Higgs potential in this scenario has a periodicity. We calculate the coupling in the five-dimensional $SU(3)$ x $U(1)_X$ gauge-Higgs unification model and obtain 70% deviation from the SM prediction.
Due to the high anticipated experimental precision at the Future Circular Collider FCC-ee (or other proposed $e^+e^-$ colliders, such as ILC, CLIC, or CEPC) for electroweak and Higgs-boson precision measurements, theoretical uncertainties may have, if unattended, an important impact on the interpretation of these measurements within the Standard Model (SM), and thus on constraints on new physics. Current theory uncertainties, which would dominate the total uncertainty, need to be strongly reduced through future advances in the calculation of multi-loop radiative corrections together with improved experimental and theoretical control of the precision of SM input parameters. This document aims to provide an estimate of the required improvement in calculational accuracy in view of the anticipated high precision at the FCC-ee. For the most relevant electroweak and Higgs-boson precision observables we evaluate the corresponding quantitative impact.
116 - M. Krause , M. Muhlleitner 2019
Precision predictions play an important role in the search for indirect New Physics effects in the Higgs sector itself. For the electroweak (EW) corrections of the Higgs bosons in extended Higgs sectors several renormalization schemes have been worked out that provide gauge-parameter-independent relations between the input parameters and the computed observables. Our recently published program codes 2HDECAY and ewN2HDECAY allow for the computation of the EW corrections to the Higgs decay widths and branching ratios of the Two-Higgs-Doublet Model (2HDM) and the Next-to-Minimal-2HDM (N2HDM) for different renormalization schemes of the scalar mixing angles. In this paper, we present a comprehensive and complete overview over the relative size of the EW corrections to the branching ratios of the 2HDM and N2HDM neutral Higgs bosons for different applied renormalization schemes. We quantify the size of the EW corrections of Standard Model(SM)- and non-SM-like Higgs bosons and moreover also identify renormalization schemes that are well-behaved and do not induce unnaturally large corrections. We furthermore pin down decays and parameter regions that feature large EW corrections and need further treatment in order to improve the predictions. Our study sets the scene for future work in the computation of higher-order corrections to the decays of non-minimal Higgs sectors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا