Do you want to publish a course? Click here

A Systematic Survey for z < 0.04 Changing-Look AGNs

408   0   0.0 ( 0 )
 Added by Madhooshi Senarath
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have conducted a systematic survey for z $<$ 0.04 active Galactic nuclei (AGNs) that may have changed spectral class over the past decade. We use SkyMapper, Pan-STARRS and the Veron-Cetty & Veron (2010) catalogue to search the entire sky for these ``changing-look AGNs using a variety of selection methods, where Pan-STARRS has a coverage of 3$pi$ steradians (sky north of Declination $-30^circ$) and SkyMapper has coverage of $sim$ 21,000$~rm{deg^2}$ (sky south of Declination $0^circ$). We use small aperture photometry to measure how colour and flux have changed over time, where a change may indicate a change in spectral type. Optical colour and flux are used as a proxy for changing H$alpha$ equivalent width, while WISE 3.4 $mu$m flux is used to look for changes in the hot dust component. We have identified four AGNs with varying spectra selected using our optical colour selection method. Three AGNs were confirmed from recent observations with WiFeS on the 2.3 m telescope at Siding Spring and the other was identified from archival spectra alone. From this, we identify two new changing look AGNs; NGC 1346 and 2MASX J20075129-1108346. We also recover Mrk 915 and Mrk 609, which are known to have varying spectra in the literature, but they do not meet our specific criteria for changing look AGNs.



rate research

Read More

We present a systematic search for changing-look quasars based on repeat photometry from SDSS and Pan-STARRS1, along with repeat spectra from SDSS and SDSS-III BOSS. Objects with large, |Delta g|>1 mag photometric variations in their light curves are selected as candidates to look for changes in broad emission line (BEL) features. Out of a sample of 1011 objects that satisfy our selection criteria and have more than one epoch of spectroscopy, we find 10 examples of quasars that have variable and/or changing-look BEL features. Four of our objects have emerging BELs; five have disappearing BELs, and one object shows tentative evidence for having both emerging and disappearing BELs. With redshifts in the range 0.20 < z < 0.63, this sample includes the highest-redshift changing-look quasars discovered to date. We highlight the quasar J102152.34+464515.6 at z = 0.204. Here, not only have the Balmer emission lines strongly diminished in prominence, including H$beta$ all but disappearing, but the blue continuum $f_{ u} propto u^{1/3}$ typical of an AGN is also significantly diminished in the second epoch of spectroscopy. Using our selection criteria, we estimate that >15% of strongly variable luminous quasars display changing-look BEL features on rest-frame timescales of 8 to 10 years. Plausible timescales for variable dust extinction are factors of 2-10 too long to explain the dimming and brightening in these sources, and simple dust reddening models cannot reproduce the BEL changes. On the other hand, an advancement such as disk reprocessing is needed if the observed variations are due to accretion rate changes.
84 - Hengxiao Guo 2019
Changing-Look (CL) is a rare phenomenon of Active Galactic Nuclei (AGNs) that exhibit emerging or disappearing broad lines accompanied by continuum variations on astrophysically short timescales ($lesssim$ 1 yr to a few decades). While previous studies have found Balmer-line (broad H$alpha$ and/or H$beta$) CL AGNs, the broad Mg II line is persistent even in dim states. No unambiguous Mg II CL AGN has been reported to date. We perform a systematic search of Mg II CL AGNs using multi-epoch spectra of a special population of Mg II-emitters (characterized by strong broad Mg II emission with little evidence for AGN from other normal indicators such as broad H$alpha$ and H$beta$ or blue power-law continua) from the Fourteenth Data Release of the Sloan Digital Sky Survey. We present the discovery of the first unambiguous case of an Mg II CL AGN, SDSS J152533.60+292012.1 (at redshift $z$ = 0.449), which is turning off within rest-frame 286 days. The dramatic diminishing of Mg II equivalent width (from 110 $pm$ 26 Angstrom to being consistent with zero), together with little optical continuum variation ($Delta V_{rm max-min}$ $=$ 0.17 $pm$ 0.05 mag) coevally over $sim$ 10 years, rules out dust extinction or a tidal disruption event. Combined with previously known H$beta$ CL AGNs, we construct a sequence that represents different temporal stages of CL AGNs. This CL sequence is best explained by the photoionization model of Guo et al. (2019). In addition, we present two candidate turn-on Mg II CL AGNs and a sample of 361 Mg II-emitters for future Mg II CL AGN searches.
278 - J. Wang , D. W. Xu , Y. Wang 2019
We here report a spectroscopic identification of two new changing-look AGNs (CL-AGNs): SDSS,J104705.16+544405.8 and SDSS,J120447.91+170256.8 both with a turn-off type transition from type 1 to type 1.8/1.9. The identification is arrived by a follow-up spectroscopic observation of the five changing-look AGN (CL-AGN) candidates that are extracted from the sample recently released in Macleod et al. The candidates are extract by the authors from the Sloan Digit Sky Survey Data Release 7 spectroscopically confirmed quasars with large amplitude variability. By compiling a sample of 26 previously identified CL-AGNs, we confirm the claim in Macleod et al. that CL-AGNs tend to be biased against low Eddington ratio, and identify an overlap between the CL-AGNs at their dim state and the so-called intermediate-type AGNs. The overlap implies that there two populations of the intermediate-type AGNs with different origins. One is due to the torus orientation effect, and the another the intrinsic change of the accretion rate of the central supermassive blackholes.
If the disappearance of the broad emission lines observed in changing-look quasars originates from the obscuration of the quasar core by dusty clouds moving in the torus, high linear optical polarization would be expected in those objects. We then measured the rest-frame UV-blue linear polarization of a sample of 13 changing-look quasars, 7 of them being in a type 1.9-2 state. For all quasars but one the polarization degree is lower than 1%. This suggests that the disappearance of the broad emission lines cannot be attributed to dust obscuration, and supports the scenario in which changes of look are caused by a change in the rate of accretion onto the supermassive black hole. Such low polarization degrees also indicate that these quasars are seen under inclinations close to the system axis. One type 1.9-2 quasar in our sample shows a high polarization degree of 6.8%. While this polarization could be ascribed to obscuration by a moving dusty cloud, we argue that this is unlikely given the very long time needed for a cloud from the torus to eclipse the broad emission line region of that object. We propose that the high polarization is due to the echo of a past bright phase seen in polar-scattered light. This interpretation raises the possibility that broad emission lines observed in the polarized light of some type 2 active galactic nuclei can be echoes of past type 1 phases and not evidence of hidden broad emission line regions.
Changing-look Active Galactic Nuclei (CL-AGNs) are a subset of AGNs in which the broad Balmer emission lines appear or disappear within a few years. We use the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey to identify five CL-AGNs. The 2-D photometric and kinematic maps reveal common features as well as some unusual properties of CL-AGN hosts as compared to the AGN hosts in general. All MaNGA CL-AGNs reside in the star-forming main sequence, similar to MaNGA non-changing-look AGNs (NCL-AGNs). The $80% pm 16%$ of our CL-AGNs do possess pseudo-bulge features, and follow the overall NCL-AGNs $M_{BH}-sigma_{*}$ relationship. The kinematic measurements indicate that they have similar distributions in the plane of angular momentum versus galaxy ellipticity. MaNGA CL-AGNs however show a higher, but not statistically significant ($20% pm 16%$) fraction of counter-rotating features compared to that ($1.84% pm 0.61%$) in general star-formation population. In addition, MaNGA CL-AGNs favor more face-on (axis ratio $>$ 0.7) than that of Type I NCL-AGNs. These results suggest that host galaxies could play a role in the CL-AGN phenomenon.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا