Do you want to publish a course? Click here

A Systematic Search for Changing-Look Quasars in SDSS

92   0   0.0 ( 0 )
 Added by Chelsea L MacLeod
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a systematic search for changing-look quasars based on repeat photometry from SDSS and Pan-STARRS1, along with repeat spectra from SDSS and SDSS-III BOSS. Objects with large, |Delta g|>1 mag photometric variations in their light curves are selected as candidates to look for changes in broad emission line (BEL) features. Out of a sample of 1011 objects that satisfy our selection criteria and have more than one epoch of spectroscopy, we find 10 examples of quasars that have variable and/or changing-look BEL features. Four of our objects have emerging BELs; five have disappearing BELs, and one object shows tentative evidence for having both emerging and disappearing BELs. With redshifts in the range 0.20 < z < 0.63, this sample includes the highest-redshift changing-look quasars discovered to date. We highlight the quasar J102152.34+464515.6 at z = 0.204. Here, not only have the Balmer emission lines strongly diminished in prominence, including H$beta$ all but disappearing, but the blue continuum $f_{ u} propto u^{1/3}$ typical of an AGN is also significantly diminished in the second epoch of spectroscopy. Using our selection criteria, we estimate that >15% of strongly variable luminous quasars display changing-look BEL features on rest-frame timescales of 8 to 10 years. Plausible timescales for variable dust extinction are factors of 2-10 too long to explain the dimming and brightening in these sources, and simple dust reddening models cannot reproduce the BEL changes. On the other hand, an advancement such as disk reprocessing is needed if the observed variations are due to accretion rate changes.



rate research

Read More

The uncertain origin of the recently-discovered `changing-looking quasar phenomenon -- in which a luminous quasar dims significantly to a quiescent state in repeat spectroscopy over ~10 year timescales -- may present unexpected challenges to our understanding of quasar accretion. To better understand this phenomenon, we take a first step to building a sample of changing-look quasars with a systematic but simple archival search for these objects in the Sloan Digital Sky Survey Data Release 12. By leveraging the >10 year baselines for objects with repeat spectroscopy, we uncover two new changing-look quasars, and a third discovered previously. Decomposition of the multi-epoch spectra and analysis of the broad emission lines suggest that the quasar accretion disk emission dims due to rapidly decreasing accretion rates (by factors of >2.5), while disfavoring changes in intrinsic dust extinction for the two objects where these analyses are possible. Broad emission line energetics also support intrinsic dimming of quasar emission as the origin for this phenomenon rather than transient tidal disruption events or supernovae. Although our search criteria included quasars at all redshifts and transitions from either quasar-like to galaxy-like states or the reverse, all of the clear cases of changing-look quasars discovered were at relatively low-redshift (z ~ 0.2 - 0.3) and only exhibit quasar-like to galaxy-like transitions.
If the disappearance of the broad emission lines observed in changing-look quasars originates from the obscuration of the quasar core by dusty clouds moving in the torus, high linear optical polarization would be expected in those objects. We then measured the rest-frame UV-blue linear polarization of a sample of 13 changing-look quasars, 7 of them being in a type 1.9-2 state. For all quasars but one the polarization degree is lower than 1%. This suggests that the disappearance of the broad emission lines cannot be attributed to dust obscuration, and supports the scenario in which changes of look are caused by a change in the rate of accretion onto the supermassive black hole. Such low polarization degrees also indicate that these quasars are seen under inclinations close to the system axis. One type 1.9-2 quasar in our sample shows a high polarization degree of 6.8%. While this polarization could be ascribed to obscuration by a moving dusty cloud, we argue that this is unlikely given the very long time needed for a cloud from the torus to eclipse the broad emission line region of that object. We propose that the high polarization is due to the echo of a past bright phase seen in polar-scattered light. This interpretation raises the possibility that broad emission lines observed in the polarized light of some type 2 active galactic nuclei can be echoes of past type 1 phases and not evidence of hidden broad emission line regions.
We have conducted a systematic survey for z $<$ 0.04 active Galactic nuclei (AGNs) that may have changed spectral class over the past decade. We use SkyMapper, Pan-STARRS and the Veron-Cetty & Veron (2010) catalogue to search the entire sky for these ``changing-look AGNs using a variety of selection methods, where Pan-STARRS has a coverage of 3$pi$ steradians (sky north of Declination $-30^circ$) and SkyMapper has coverage of $sim$ 21,000$~rm{deg^2}$ (sky south of Declination $0^circ$). We use small aperture photometry to measure how colour and flux have changed over time, where a change may indicate a change in spectral type. Optical colour and flux are used as a proxy for changing H$alpha$ equivalent width, while WISE 3.4 $mu$m flux is used to look for changes in the hot dust component. We have identified four AGNs with varying spectra selected using our optical colour selection method. Three AGNs were confirmed from recent observations with WiFeS on the 2.3 m telescope at Siding Spring and the other was identified from archival spectra alone. From this, we identify two new changing look AGNs; NGC 1346 and 2MASX J20075129-1108346. We also recover Mrk 915 and Mrk 609, which are known to have varying spectra in the literature, but they do not meet our specific criteria for changing look AGNs.
We report on three redshift $z>2$ quasars with dramatic changes in their C IV emission lines, the first sample of changing-look quasars (CLQs) at high redshift. This is also the first time the changing-look behaviour has been seen in a high-ionisation emission line. SDSS J1205+3422, J1638+2827, and J2228+2201 show interesting behaviour in their observed optical light curves, and subsequent spectroscopy shows significant changes in the C IV broad emission line, with both line collapse and emergence being displayed on rest-frame timescales of $sim$240-1640 days. These are rapid changes, especially when considering virial black hole mass estimates of $M_{rm BH} > 10^{9} M_{odot}$ for all three quasars. Continuum and emission line measurements from the three quasars show changes in the continuum-equivalent width plane with the CLQs seen to be on the edge of the full population distribution, and showing indications of an intrinsic Baldwin effect. We put these observations in context with recent state-change models, and note that even in their observed low-state, the C IV CLQs are generally above $sim$5% in Eddington luminosity.
104 - Zhang XueGuang 2021
In this manuscript, we report a new changing-look QSO (CLQSO) SDSS J2241 at $z=0.059$. Based on the multi-epoch SDSS spectra from 2011 to 2017, the flux ratio of broad H$alpha$ to broad H$beta$ has been changed from 7 in 2011 to 2.7 in 2017, leading SDSS J2241 with spectral index $alpha_lambdasim-5.21pm0.02$ ($lambda< 4000$AA) in 2017 to be so-far the bluest CLQSO. Based on the SDSS spectrum in 2011, the host galaxy contributions with stellar velocity dispersion $sim86{rm km/s}$ can be well determined, leading to the M-sigma relation expected central BH mass $sim3times10^6{rm M_odot}$. However, through properties of the broad H$alpha$, the virial BH mass is $sim10^8{rm M_odot}$, about two magnitudes larger than the mass through the M-sigma relation. The different BH masses through different methods indicate SDSS J2241 is one unique CLQSO. Meanwhile, the long-term photometric light curve shows interesting variability properties, not expected by DRW process commonly applied in AGN but probably connected to a central TDE. Furthermore, based on continuum emission properties in 2017 with no dust obscurations, only considering the moving dust clouds cannot be preferred to explain the CLQSO SDSS J2241, because the expected intrinsic reddening corrected continuum emissions were unreasonably higher than the unobscured continuum emissions in 2017.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا