No Arabic abstract
The present work employs the Linder parametrization of a constant growth index cite{linder/index} to investigate the evolution of growth rate of clustering and the dissipation of configurational entropy in some of the most widely studied Chaplygin gas models, such as the generalized Chaplygin gas and the modified Chaplygin gas. The model parameters of the Chaplygin gas models are found to play a vital role in the evolution of growth rate, dark energy density parameter, EoS parameter, and configurational entropy. Furthermore, the work communicates the rate of change of configurational entropy to attain a minimum which depend solely on the choice of model parameters and that there exist suitable parameter combinations giving rise to a viable dissipation of configurational entropy, and therefore certifying its time derivative to hit a minimum at a scale factor which complies with the current observational constraints on the redshift of transition from a dust to an accelerated Universe and thereby making Chaplygin gas models a viable candidate for dark energy.
The evolution of the configurational entropy of the universe relies on the growth rate of density fluctuations and on the Hubble parameter. In this work, I present the evolution of configurational entropy for the power-law $f(T)$ gravity model of the form $f(T) = zeta (-T)^ b$, where, $zeta = (6 H_{0}^{2})^{(1-s)}frac{Omega_{P_{0}}}{2 s -1}$ and $b$ a free parameter. From the analysis, I report that the configurational entropy in $f(T)$ gravity is negative and decreases with increasing scale factor and therefore consistent with an accelerating universe. The decrease in configurational entropy is the highest when $b$ vanishes since the effect of dark energy is maximum when $b=0$. Additionally, I find that as the parameter $b$ increases, the growth rate, growing mode, and the matter density parameter evolve slowly whereas the Hubble parameter evolves rapidly. The rapid evolution of the Hubble parameter in conjunction with the growth rate for the $b=0$ may provide an explanation for the large dissipation of configurational entropy.
Unification of dark matter and dark energy as short- and long-range manifestations of a single cosmological substance is possible in models described by the generalized Chaplygin gas equation of state. We show it admits halo-like structures and discuss their density profiles, the resulting space-time geometry and the rotational velocity profiles expected in these models.
The generalized Chaplygin gas, which interpolates between a high density relativistic era and a non-relativistic matter phase, is a popular dark energy candidate. We consider a generalization of the Chaplygin gas model, by assuming the presence of a bulk viscous type dissipative term in the effective thermodynamic pressure of the gas. The dissipative effects are described by using the truncated Israel-Stewart model, with the bulk viscosity coefficient and the relaxation time functions of the energy density only. The corresponding cosmological dynamics of the bulk viscous Chaplygin gas dominated universe is considered in detail for a flat homogeneous isotropic Friedmann-Robertson-Walker geometry. For different values of the model parameters we consider the evolution of the cosmological parameters (scale factor, energy density, Hubble function, deceleration parameter and luminosity distance, respectively), by using both analytical and numerical methods. In the large time limit the model describes an accelerating universe, with the effective negative pressure induced by the Chaplygin gas and the bulk viscous pressure driving the acceleration. The theoretical predictions of the luminosity distance of our model are compared with the observations of the type Ia supernovae. The model fits well the recent supernova data. From the fitting we determine both the equation of state of the Chaplygin gas, and the parameters characterizing the bulk viscosity. The evolution of the scalar field associated to the viscous Chaplygin fluid is also considered, and the corresponding potential is obtained. Hence the viscous Chaplygin gas model offers an effective dynamical possibility for replacing the cosmological constant, and to explain the recent acceleration of the universe.
AdS graviton stars are studied in the differential configurational entropy setup, as solutions of the effective Einstein field equations that backreact to compactification. With the critical central density of AdS graviton stars, the differential configurational entropy is derived and computed, presenting global minima for a wide range of stellar mass magnitude orders. It indicates insular domains of configurational stability for AdS graviton stars near astrophysical neutron star densities. Other relevant features are also reported.
In this paper, we examine the possible realization of a new family of inflation called shaft inflation by assuming the modified Chaplygin gas model and tachyon scalar field. We also consider the special form of dissipative coefficient as $Gamma={a_0}frac{T^{3}}{phi^{2 }}$ and calculate the various inflationary parameters in the scenario of strong and weak dissipative regimes. In order to examine the behavior of inflationary parameters, the planes of $n_s - phi,~n_s - r$ and $n_s - alpha_s$ (where $n_s,~alpha_s,~r$ and $phi$ represent spectral index, its running, tensor to scalar ratio and scalar field respectively) are being developed which lead to the constraints: $r< 0.11$, $n_s=0.96pm0.025$ and $alpha_s =-0.019pm0.025$. It is quite interesting that these results of inflationary parameters are compatible with BICEP$2$, WMAP $(7+9)$ and recent Planck data.