Do you want to publish a course? Click here

Thermal conductivity of CaF$_{2}$ at high pressure

52   0   0.0 ( 0 )
 Added by Somayeh Faraji
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the thermal transport properties of three CaF$_{2}$ polymorphs up to a pressure of 30 GPa using first-principle calculations and an interatomic potential based on machine learning. The lattice thermal conductivity $kappa$ is computed by iteratively solving the linearized Boltzmann transport equation (BTE) and by taking into account three-phonon scattering. Overall, $kappa$ increases nearly linearly with pressure, and we show that the recently discovered $delta$-phase with $Pbar{6}2m$ symmetry and the previously known $gamma$-CaF$_{2}$ high-pressure phase have significantly lower lattice thermal conductivities than the ambient-thermodynamic cubic fluorite ($Fmbar{3}m$) structure. We argue that the lower $kappa$ of these two high-pressure phases stems mainly due to a lower contribution of acoustic modes to $kappa$ as a result of their small group velocities. We further show that the phonon mean free paths are very short for the $Pbar{6}2m$ and $Pnma$ structures at high temperatures, and resort to the Cahill-Pohl model to assess the lower limit of thermal conductivity in these domains.



rate research

Read More

We developed a theory of electric and thermoelectric conductivity of lightly doped SrTiO$_3$ in the non-degenerate region $k_B T geq E_F$, assuming that the major source of electron scattering is their interaction with soft transverse optical phonons present due to proximity to ferroelectric transition. We have used kinetic equation approach within relaxation-time approximation and we have determined energy-dependent transport relaxation time $tau(E)$ by the iterative procedure. Using electron effective mass $m$ and electron-transverse phonon coupling constant $lambda$ as two fitting parameters, we are able to describe quantitatively a large set of the measured temperature dependences of resistivity $R(T)$ and Seebeck coefficient $mathcal{S}(T)$ for a broad range of electron densities studied experimentally in recent paper [1]. In addition, we calculated Nernst ratio $ u=N/B$ in the linear approximation over weak magnetic field in the same temperature range.
By means of first-principles calculations, we investigate the thermal properties of silica as it evolves, under hydrostatic compression, from a stishovite phase into a CaCl$_2$-type structure. We compute the thermal conductivity tensor by solving the linearized Boltzmann transport equation iteratively in a wide temperature range, using for this the pressure-dependent harmonic and anharmonic interatomic couplings obtained from first principles. Most remarkably, we find that, at low temperatures, SiO$_2$ displays a large peak in the in-plane thermal conductivity and a highly anisotropic behavior close to the structural transformation. We trace back the origin of these features by analyzing the phonon contributions to the conductivity. We discuss the implications of our results in the general context of continuous structural transformations in solids, as well as the potential geological interest of our results for silica.
167 - A. A. Balandin , S. Ghosh , W. Bao 2008
We report on the first measurement of the thermal conductivity of a suspended single layer graphene. The measurements were performed using a non-contact optical technique. The near room-temperature values of the thermal conductivity in the range ~ 4840 to 5300 W/mK were extracted for a single-layer graphene. The extremely high value of the thermal conductivity suggests that graphene can outperform carbon nanotubes in heat conduction.
Two-dimensional materials are characterised by a number of unique physical properties which can potentially make them useful to a wide diversity of applications. In particular, the large thermal conductivity of graphene and hexagonal boron nitride has already been acknowledged and these materials have been suggested as novel core materials for thermal management in electronics. However, it was not clear if mass produced flakes of hexagonal boron nitride would allow one to achieve an industrially-relevant value of thermal conductivity. Here we demonstrate that laminates of hexagonal boron nitride exhibit thermal conductivity of up to 20 W/mK, which is significantly larger than that currently used in thermal management. We also show that the thermal conductivity of laminates increases with the increasing volumetric mass density, which creates a way of fine-tuning its thermal properties.
AlN is an ultra-wide bandgap semiconductor which has been developed for applications including power electronics and optoelectronics. Thermal management of these applications is the key for stable device performance and allowing for long lifetimes. AlN, with its potentially high thermal conductivity, can play an important role serving as a dielectric layer, growth substrate, and heat spreader to improve device performance. However, the intrinsic high thermal conductivity of bulk AlN predicted by theoretical calculations has not been experimentally observed because of the difficulty in producing materials with low vacancy and impurity levels, and other associated defect complexes in AlN which can decrease the thermal conductivity. This work reports the growth of thick AlN layers by MOCVD with an air-pocketed AlN layer and the first experimental observation of intrinsic thermal conductivity from 130 K to 480 K that matches density-function-theory calculations for single crystal AlN, producing some of the highest values ever measured. Detailed material characterizations confirm the high quality of these AlN samples with one or two orders of magnitude lower impurity concentrations than seen in commercially available bulk AlN. Measurements of these commercially available bulk AlN substrates from 80 K to 480 K demonstrated a lower thermal conductivity, as expected. A theoretical thermal model is built to interpret the measured temperature dependent thermal conductivity. Our work demonstrates that it is possible to obtain theoretically high values of thermal conductivity in AlN and such films may impact the thermal management and reliability of future electronic and optoelectronics devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا