No Arabic abstract
There is a large consensus that gas in high-$z$ galaxies is highly turbulent, because of a combination of stellar feedback processes and gravitational instabilities driven by mergers and gas accretion. In this paper, we present the analysis of a sample of five Dusty Star Forming Galaxies (DSFGs) at $4 lesssim zlesssim 5$. Taking advantage of the magnifying power of strong gravitational lensing, we quantified their kinematic and dynamical properties from ALMA observations of their [CII] emission line. We combined the dynamical measurements obtained for these galaxies with those obtained from previous studies to build the largest sample of $z sim 4.5$ galaxies with high-quality data and sub-kpc spatial resolutions, so far. We found that all galaxies in the sample are dynamically cold, with rotation-to-random motion ratios, $V/sigma$, between 7 to 15. The relation between their velocity dispersions and their star-formation rates indicates that stellar feedback is sufficient to sustain the turbulence within these galaxies and no further mechanisms are needed. In addition, we performed a rotation curve decomposition to infer the relative contribution of the baryonic (gas, stars) and dark matter components to the total gravitational potentials. This analysis allowed us to compare the structural properties of the studied DSFGs with those of their descendants, the local early type galaxies. In particular, we found that five out of six galaxies of the sample show the dynamical signature of a bulge, indicating that the spheroidal component is already in place at $z sim 4.5$.
Massive starburst galaxies in the early Universe are estimated to have depletion times of $sim 100$ Myr and thus be able to convert their gas very quickly into stars, possibly leading to a rapid quenching of their star formation. For these reasons, they are considered progenitors of massive early-type galaxies (ETGs). In this paper, we study two high-$z$ starbursts, AzTEC/C159 ($zsimeq 4.57$) and J1000+0234 ($zsimeq 4.54$), observed with ALMA in the [CII] 158-$mu$m emission line. These observations reveal two massive and regularly rotating gaseous discs. A 3D modelling of these discs returns rotation velocities of about $500$ km/s and gas velocity dispersions as low as $approx 20$ km/s, leading to very high ratios between regular and random motion ($V/sigma {lower.7exhbox{$;stackrel{textstyle>}{sim};$}} 20$), at least in AzTEC/C159. The mass decompositions of the rotation curves show that both galaxies are highly baryon-dominated with gas masses of $approx 10^{11}M_{odot}$, which, for J1000+0234, is significantly higher than previous estimates. We show that these high-$z$ galaxies overlap with $z=0$ massive ETGs in the ETG analogue of the stellar-mass Tully-Fisher relation once their gas is converted into stars. This provides dynamical evidence of the connection between massive high-$z$ starbursts and ETGs, although the transformation mechanism from fast rotating to nearly pressure-supported systems remains unclear.
Recent estimates point to abundances of z > 4 sub-millimeter (sub-mm) galaxies far above model predictions. The matter is still debated. According to some analyses the excess may be substantially lower than initially thought and perhaps accounted for by flux boosting and source blending. However, there is no general agreement on this conclusion. An excess of z > 6 dusty galaxies has also been reported albeit with poor statistics. On the other hand, evidence of a top-heavy initial mass function (IMF) in high-z starburst galaxies has been reported in the past decades. This would translate into a higher sub-mm luminosity of dusty galaxies at fixed star formation rate, i.e., into a higher abundance of bright high-z sub-mm galaxies than expected for a universal Chabrier IMF. Exploiting our physical model for high-z proto-spheroidal galaxies, we find that part of the excess can be understood in terms of an IMF somewhat top-heavier than Chabrier. Such IMF is consistent with that recently proposed to account for the low 13C/18O abundance ratio in four dusty starburst galaxies at z = 2-3. However, extreme top-heavy IMFs are inconsistent with the sub-mm counts at z > 4.
We exploit the continuity equation approach and the `main sequence star-formation timescales to show that the observed high abundance of galaxies with stellar masses > a few 10^10 M_sun at redshift z>4 implies the existence of a galaxy population featuring large star formation rates (SFRs) > 10^2 M_sun/yr in heavily dust-obscured conditions. These galaxies constitute the high-redshift counterparts of the dusty star-forming population already surveyed for z<3 in the far-IR band by the Herschel space observatory. We work out specific predictions for the evolution of the corresponding stellar mass and SFR functions out to z~10, elucidating that the number density at z<8 for SFRs >30 M_sun/yr cannot be estimated relying on the UV luminosity function alone, even when standard corrections for dust extinction based on the UV slope are applied. We compute the number counts and redshift distributions (including galaxy-scale gravitational lensing) of this galaxy population, and show that current data from AzTEC-LABOCA, SCUBA-2 and ALMA-SPT surveys are already digging into it. We substantiate how an observational strategy based on a color preselection in the far-IR or (sub-)mm band with Herschel and SCUBA-2, supplemented by photometric data via on-source observations with ALMA, can allow to reconstruct the bright end of the SFR functions out to z~8. In parallel, such a challenging task can be managed by exploiting current UV surveys in combination with (sub-)mm observations by ALMA and NIKA2 and/or radio observations by SKA and its precursors.
Water ($rm H_{2}O$), one of the most ubiquitous molecules in the universe, has bright millimeter-wave emission lines easily observed at high-redshift with the current generation of instruments. The low excitation transition of $rm H_{2}O$, p$-$$rm H_{2}O$(202 $-$ 111) ($ u_{rest}$ = 987.927 GHz) is known to trace the far-infrared (FIR) radiation field independent of the presence of active galactic nuclei (AGN) over many orders-of-magnitude in FIR luminosity (L$_{rm FIR}$). This indicates that this transition arises mainly due to star formation. In this paper, we present spatially ($sim$0.5 arcsec corresponding to $sim$1 kiloparsec) and spectrally resolved ($sim$100 kms$^{-1}$) observations of p$-$$rm H_{2}O$(202 $-$ 111) in a sample of four strong gravitationally lensed high-redshift galaxies with the Atacama Large Millimeter/submillimeter Array (ALMA). In addition to increasing the sample of luminous ($ > $ $10^{12}$L$_{odot}$) galaxies observed with $rm H_{2}O$, this paper examines the L$_{rm H_{2}O}$/L$_{rm FIR}$ relation on resolved scales for the first time at high-redshift. We find that L$_{rm H_{2}O}$ is correlated with L$_{rm FIR}$ on both global and resolved kiloparsec scales within the galaxy in starbursts and AGN with average L$_{rm H_{2}O}$/L$_{rm FIR}$ =$2.76^{+2.15}_{-1.21}times10^{-5}$. We find that the scatter in the observed L$_{rm H_{2}O}$/L$_{rm FIR}$ relation does not obviously correlate with the effective temperature of the dust spectral energy distribution (SED) or the molecular gas surface density. This is a first step in developing p$-$$rm H_{2}O$(202 $-$ 111) as a resolved star formation rate (SFR) calibrator.
The Herschel Multi-tiered Extragalactic Survey (HerMES) has identified large numbers of dusty star-forming galaxies (DSFGs) over a wide range in redshift. A detailed understanding of these DSFGs is hampered by the limited spatial resolution of Herschel. We present 870um 0.45 resolution imaging from the Atacama Large Millimeter/submillimeter Array (ALMA) of 29 HerMES DSFGs with far-infrared (FIR) flux densities in between the brightest of sources found by Herschel and fainter DSFGs found in ground-based sub-millimeter (sub-mm) surveys. We identify 62 sources down to the 5-sigma point-source sensitivity limit in our ALMA sample (sigma~0.2mJy), of which 6 are strongly lensed (showing multiple images) and 36 experience significant amplification (mu>1.1). To characterize the properties of the ALMA sources, we introduce and make use of uvmcmcfit, a publicly available Markov chain Monte Carlo analysis tool for interferometric observations of lensed galaxies. Our lens models tentatively favor intrinsic number counts for DSFGs with a steep fall off above 8mJy at 880um. Nearly 70% of the Herschel sources comprise multiple ALMA counterparts, consistent with previous research indicating that the multiplicity rate is high in bright sub-mm sources. Our ALMA sources are located significantly closer to each other than expected based on results from theoretical models as well as fainter DSFGs identified in the LABOCA ECDFS Submillimeter Survey. The high multiplicity rate and low projected separations argue in favor of interactions and mergers driving the prodigious emission from the brightest DSFGs as well as the sharp downturn above S_880=8mJy.