Do you want to publish a course? Click here

High-z dusty star-forming galaxies: a top-heavy initial mass function?

81   0   0.0 ( 0 )
 Added by Zhen-Yi Cai
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent estimates point to abundances of z > 4 sub-millimeter (sub-mm) galaxies far above model predictions. The matter is still debated. According to some analyses the excess may be substantially lower than initially thought and perhaps accounted for by flux boosting and source blending. However, there is no general agreement on this conclusion. An excess of z > 6 dusty galaxies has also been reported albeit with poor statistics. On the other hand, evidence of a top-heavy initial mass function (IMF) in high-z starburst galaxies has been reported in the past decades. This would translate into a higher sub-mm luminosity of dusty galaxies at fixed star formation rate, i.e., into a higher abundance of bright high-z sub-mm galaxies than expected for a universal Chabrier IMF. Exploiting our physical model for high-z proto-spheroidal galaxies, we find that part of the excess can be understood in terms of an IMF somewhat top-heavier than Chabrier. Such IMF is consistent with that recently proposed to account for the low 13C/18O abundance ratio in four dusty starburst galaxies at z = 2-3. However, extreme top-heavy IMFs are inconsistent with the sub-mm counts at z > 4.



rate research

Read More

105 - C. Mancuso 2016
We exploit the continuity equation approach and the `main sequence star-formation timescales to show that the observed high abundance of galaxies with stellar masses > a few 10^10 M_sun at redshift z>4 implies the existence of a galaxy population featuring large star formation rates (SFRs) > 10^2 M_sun/yr in heavily dust-obscured conditions. These galaxies constitute the high-redshift counterparts of the dusty star-forming population already surveyed for z<3 in the far-IR band by the Herschel space observatory. We work out specific predictions for the evolution of the corresponding stellar mass and SFR functions out to z~10, elucidating that the number density at z<8 for SFRs >30 M_sun/yr cannot be estimated relying on the UV luminosity function alone, even when standard corrections for dust extinction based on the UV slope are applied. We compute the number counts and redshift distributions (including galaxy-scale gravitational lensing) of this galaxy population, and show that current data from AzTEC-LABOCA, SCUBA-2 and ALMA-SPT surveys are already digging into it. We substantiate how an observational strategy based on a color preselection in the far-IR or (sub-)mm band with Herschel and SCUBA-2, supplemented by photometric data via on-source observations with ALMA, can allow to reconstruct the bright end of the SFR functions out to z~8. In parallel, such a challenging task can be managed by exploiting current UV surveys in combination with (sub-)mm observations by ALMA and NIKA2 and/or radio observations by SKA and its precursors.
Spectral absorption features can be used to constrain the stellar initial mass function (IMF) in the integrated light of galaxies. Spectral indices used at low redshift are in the far red, and therefore increasingly hard to detect at higher and higher redshifts as they pass out of atmospheric transmission and CCD detector wavelength windows. We employ IMF-sensitive indices at bluer wavelengths. We stack spectra of red, quiescent galaxies around $z=0.4$, from the DEEP2 Galaxy Redshift Survey. The $z=0.4$ red galaxies have 2 Gyr average ages so that they cannot be passively evolving precursors of nearby galaxies. They are slightly enhanced in C and Na, and slightly depressed in Ti. Split by luminosity, the fainter half appears to be older, a result that should be checked with larger samples in the future. We uncover no evidence for IMF evolution between $z=0.4$ and now, but we highlight the importance of sample selection, finding that an SDSS sample culled to select archetypal elliptical galaxies at z$sim$0 is offset toward a more bottom heavy IMF. Other samples, including our DEEP2 sample, show an offset toward a more spiral galaxy-like IMF. All samples confirm that the reddest galaxies look bottom heavy compared with bluer ones. Sample selection also influences age-color trends: red, luminous galaxies always look old and metal-rich, but the bluer ones can be more metal-poor, the same abundance, or more metal-rich, depending on how they are selected.
We present the average rest-frame spectrum of high-redshift dusty, star-forming galaxies from 250-770GHz. This spectrum was constructed by stacking ALMA 3mm spectra of 22 such sources discovered by the South Pole Telescope and spanning z=2.0-5.7. In addition to multiple bright spectral features of 12CO, [CI], and H2O, we also detect several faint transitions of 13CO, HCN, HNC, HCO+, and CN, and use the observed line strengths to characterize the typical properties of the interstellar medium of these high-redshift starburst galaxies. We find that the 13CO brightness in these objects is comparable to that of the only other z>2 star-forming galaxy in which 13CO has been observed. We show that the emission from the high-critical density molecules HCN, HNC, HCO+, and CN is consistent with a warm, dense medium with T_kin ~ 55K and n_H2 >~ 10^5.5 cm^-3. High molecular hydrogen densities are required to reproduce the observed line ratios, and we demonstrate that alternatives to purely collisional excitation are unlikely to be significant for the bulk of these systems. We quantify the average emission from several species with no individually detected transitions, and find emission from the hydride CH and the linear molecule CCH for the first time at high redshift, indicating that these molecules may be powerful probes of interstellar chemistry in high-redshift systems. These observations represent the first constraints on many molecular species with rest-frame transitions from 0.4-1.2mm in star-forming systems at high redshift, and will be invaluable in making effective use of ALMA in full science operations.
We report a Giant Metrewave Radio Telescope (GMRT) search for HI 21cm emission from a large sample of star-forming galaxies at $z approx 1.18 - 1.34$, lying in sub-fields of the DEEP2 Redshift Survey. The search was carried out by co-adding (stacking) the HI 21cm emission spectra of 857 galaxies, after shifting each galaxys HI 21cm spectrum to its rest frame. We obtain the $3sigma$ upper limit S$_{rm{HI}} < 2.5 mu$Jy on the average HI 21cm flux density of the 857 galaxies, at a velocity resolution of $approx 315$ km s$^{-1}$. This yields the $3sigma$ constraint M$_{rm{HI}} < 2.1 times 10^{10} times left[Delta {rm V}/315 rm{km/s} right]^{1/2} textrm{M}_odot$ on the average HI mass of the 857 stacked galaxies, the first direct constraint on the atomic gas mass of galaxies at $z > 1$. The implied limit on the average atomic gas mass fraction (relative to stars) is ${rm M}_{rm GAS}/{rm M}_* < 0.5$, comparable to the cold molecular gas mass fraction in similar star-forming galaxies at these redshifts. We find that the cosmological mass density of neutral atomic gas in massive star-forming galaxies at $z approx 1.3$ is $Omega_{rm GAS} < 3.7 times 10^{-4}$, significantly lower than $Omega_{rm GAS}$ estimates in both galaxies in the local Universe and damped Lyman-$alpha$ absorbers at $z geq 2.2$. Massive blue star-forming galaxies thus do not appear to dominate the neutral atomic gas content of the Universe at $z approx 1.3$.
The characteristic mass that sets the peak of the stellar initial mass function (IMF) is closely linked to the thermodynamic behaviour of interstellar gas, which controls how gas fragments as it collapses under gravity. As the Universe has grown in metal abundance over cosmic time, this thermodynamic behaviour has evolved from a primordial regime dominated by the competition between compressional heating and molecular hydrogen cooling to a modern regime where the dominant process in dense gas is protostellar radiation feedback, transmitted to the gas by dust-gas collisions. In this paper we map out the primordial-to-modern transition by constructing a model for the thermodynamics of collapsing, dusty gas clouds at a wide range of metallicities. We show the transition from the primordial regime to the modern regime begins at metallicity $Zsim 10^{-4} rm{Z_odot}$, passes through an intermediate stage where metal line cooling is dominant at $Z sim 10^{-3},rm{Z_{odot}}$, and then transitions to the modern dust- and feedback-dominated regime at $Zsim 10^{-2} rm{Z_odot}$. In low pressure environments like the Milky Way, this transition is accompanied by a dramatic change in the characteristic stellar mass, from $sim 50,rm{M_odot}$ at $Z sim 10^{-6},rm{Z_{odot}}$ to $sim 0.3,rm{M_odot}$ once radiation feedback begins to dominate, which marks the appearance of the modern bottom-heavy Milky Way IMF. In the high pressure environments typical of massive elliptical galaxies, the characteristic mass for the modern, dust-dominated regime falls to $sim 0.1,rm{M_{odot}}$, thus providing an explanation for the brown dwarf rich population observed in these galaxies. We conclude that metallicity is a key driver of variations in the characteristic stellar mass, and by extension, the IMF.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا