Do you want to publish a course? Click here

Geometric Response and Disclination-Induced Skin Effects in Non-Hermitian Systems

160   0   0.0 ( 0 )
 Added by Xiao-Qi Sun
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the geometric response of three-dimensional non-Hermitian crystalline systems with nontrivial point-gap topology. For systems with fourfold rotation symmetry, we show that in the presence of disclination lines with a total Frank angle which is an integer multiple of $2pi$, there can be nontrivial one-dimensional point-gap topology along the direction of the disclination lines. This results in disclination-induced non-Hermitian skin effects. By doubling a non-Hermitian Hamiltonian to a Hermitian three-dimensional chiral topological insulator, we show that the disclination-induced skin modes are zero modes of the effective surface Dirac fermion(s) in the presence of a pseudomagnetic flux induced by disclinations. Furthermore, we find that our results have a field theoretic description, and the corresponding geometric response actions (e.g., the Euclidean Wen-Zee action) enrich the topological field theory of non-Hermitian systems.



rate research

Read More

Non-Hermiticity from non-reciprocal hoppings has been shown recently to demonstrate the non-Hermitian skin effect (NHSE) under open boundary conditions (OBCs). Here we study the interplay of this effect and the Anderson localization in a textit{non-reciprocal} quasiperiodic lattice, dubbed non-reciprocal Aubry-Andr{e} model, and a textit{rescaled} transition point is exactly proved. The non-reciprocity can induce not only the NHSE, but also the asymmetry in localized states with two Lyapunov exponents for both sides. Meanwhile, this transition is also topological, characterized by a winding number associated with the complex eigenenergies under periodic boundary conditions (PBCs), establishing a textit{bulk-bulk} correspondence. This interplay can be realized by an elaborately designed electronic circuit with only linear passive RLC devices instead of elusive non-reciprocal ones, where the transport of a continuous wave undergoes a transition between insulating and amplifying. This initiative scheme can be immediately applied in experiments to other non-reciprocal models, and will definitely inspires the study of interplay of NHSEs and more other quantum/topological phenomena.
Based on a general transport theory for non-reciprocal non-Hermitian systems and a topological model that encompasses a wide range of previously studied models, we (i) provide conditions for effects such as reflectionless and transparent transport, lasing, and coherent perfect absorption, (ii) identify which effects are compatible and linked with each other, and (iii) determine by which levers they can be tuned independently. For instance, the directed amplification inherent in the non-Hermitian skin effect does not enter the spectral conditions for reflectionless transport, lasing, or coherent perfect absorption, but allows to adjust the transparency of the system. In addition, in the topological model the conditions for reflectionless transport depend on the topological phase, but those for coherent perfect absorption do not. This then allows us to establish a number of distinct transport signatures of non-Hermitian, nonreciprocal, and topological behaviour, in particular (I) reflectionless transport in a direction that depends on the topological phase, (II) invisibility coinciding with the skin-effect phase transition of topological edge states, and (III) coherent perfect absorption in a system that is transparent when probed from one side.
Berry phases strongly affect the properties of crystalline materials, giving rise to modifications of the semiclassical equations of motion that govern wave-packet dynamics. In non-Hermitian systems, generalizations of the Berry connection have been analyzed to characterize the topology of these systems. While the topological classification of non-Hermitian systems is being developed, little attention has been paid to the impact of the new geometric phases on dynamics and transport. In this work, we derive the full set of semiclassical equations of motion for wave-packet dynamics in a system governed by a non-Hermitian Hamiltonian, including corrections induced by the Berry connection. We show that non-Hermiticity is manifested in anomalous weight rate and velocity terms that are present already in one-dimensional systems, in marked distinction from the Hermitian case. We express the anomalous weight and velocity in terms of the Berry connections defined in the space of left and right eigenstates and compare the analytical results with numerical lattice simulations. Our work specifies the conditions for observing the anomalous contributions to the semiclassical dynamics and thereby paves the way to their experimental detection, which should be within immediate reach in currently available metamaterials.
Non-Hermitian skin effect exhibits the collapse of the extended bulk modes into the extensive number of localized boundary states in open boundary conditions. Here we demonstrate the disorder-driven phase transition of the trivial non-Hermitian system to the higher-order non-Hermitian skin effect phase. In contrast to the clean systems, the disorder-induced boundary modes form an arc in the complex energy plane, which is the manifestation of the disorder-driven dynamical phase transition. At the phase transition, the localized corner modes and bulk modes characterized by trivial Hamiltonian coexist within the single-band but are separated in the complex energy plane. This behavior is analogous to the mobility edge phenomena in the disordered Hermitian systems. Using effective medium theory and numerical diagonalizations, we provide a systematic characterization of the disorder-driven phase transitions.
Far from being limited to a trivial generalization of their Hermitian counterparts, non-Hermitian topological phases have gained widespread interest due to their unique properties. One of the most striking non-Hermitian phenomena is the skin effect, i.e., the localization of a macroscopic fraction of bulk eigenstates at a boundary, which underlies the breakdown of the bulk-edge correspondence. Here we investigate the emergence of the skin effect in magnetic insulating systems by developing a phenomenological approach to describing magnetic dissipation within a lattice model. Focusing on a spin-orbit-coupled van der Waals (vdW) ferromagnet with spin-nonconserving magnon-phonon interactions, we find that the magnetic skin effect emerges in an appropriate temperature regime. Our results suggest that the interference between Dzyaloshinskii-Moriya interaction (DMI) and nonlocal magnetic dissipation plays a key role in the accumulation of bulk states at the boundaries.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا