Do you want to publish a course? Click here

The MUSE Extremely Deep Field: the Cosmic Web in Emission at High Redshift

251   0   0.0 ( 0 )
 Added by Roland Bacon
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the discovery of diffuse extended Ly-alpha emission from redshift 3.1 to 4.5, tracing cosmic web filaments on scales of 2.5-4 comoving Mpc. These structures have been observed in overdensities of Ly-alpha emitters in the MUSE Extremely Deep Field, a 140 hour deep MUSE observation located in the Hubble Ultra Deep Field. Among the 22 overdense regions identified, 5 are likely to harbor very extended Ly-alpha emission at high significance with an average surface brightness of $mathrm{5 times 10^{-20} erg s^{-1} cm^{-2} arcsec^{-2}}$. Remarkably, 70% of the total Ly-alpha luminosity from these filaments comes from beyond the circumgalactic medium of any identified Ly-alpha emitters. Fluorescent Ly-alpha emission powered by the cosmic UV background can only account for less than 34% of this emission at z$approx$3 and for not more than 10% at higher redshift. We find that the bulk of this diffuse emission can be reproduced by the unresolved Ly-alpha emission of a large population of ultra low luminosity Ly-alpha emitters ($mathrm{<10^{40} erg s^{-1}}$), provided that the faint end of the Ly-alpha luminosity function is steep ($alpha lessapprox -1.8$), it extends down to luminosities lower than $mathrm{10^{38} - 10^{37} erg s^{-1}}$ and the clustering of these Ly-alpha emitters is significant (filling factor $< 1/6$). If these Ly-alpha emitters are powered by star formation, then this implies their luminosity function needs to extend down to star formation rates $mathrm{< 10^{-4} M_odot yr^{-1}}$. These observations provide the first detection of the cosmic web in Ly-alpha emission in typical filamentary environments and the first observational clue for the existence of a large population of ultra low luminosity Ly-alpha emitters at high redshift.



rate research

Read More

Cosmological simulations suggest that most of the matter in the Universe is distributed along filaments connecting galaxies. Illuminated by the cosmic UV background (UVB), these structures are expected to glow in fluorescent Lyman alpha emission with a Surface Brightness (SB) that is well below current observational limits for individual detections. Here, we perform a stacking analysis of the deepest MUSE/VLT data using three-dimensional regions (subcubes) with orientations determined by the position of neighbouring Lyman alpha galaxies (LAEs) at 3<z<4. Our method should increase the probability of detecting filamentary Lyman alpha emission, provided that these structures are Lyman Limit Systems (LLSs). By stacking 390 oriented subcubes we reach a 2 sigma sensitivity level of SB ~ 0.44e-20 erg/s/cm^2/arcsec^2 in an aperture of 1 arcsec^2 x 6.25 Angstrom, which is three times below the expected fluorescent Lyman alpha signal from the Haardt-Madau 2012 (HM12) UVB at z~3.5. No detectable emission is found on intergalactic scales, implying that at least two thirds of our subcubes do not contain oriented LLSs for a HM12 UVB. On the other hand, significant emission is detected in the circum-galactic medium (CGM) of galaxies in the direction of the neighbours. The signal is stronger for galaxies with a larger number of neighbours and appears to be independent of any other galaxy properties such as luminosity, redshift and neighbour distance. We estimate that preferentially oriented satellite galaxies cannot contribute significantly to this signal, suggesting instead that gas densities in the CGM are typically larger in the direction of neighbouring galaxies on cosmological scales.
We trace the cosmic web at redshifts 1.0 <= z <= 1.8 using the quasar data from the SDSS DR7 QSO catalogue (Schneider et al. 2010). We apply a friend-of-friend (FoF) algorithm to the quasar and random catalogues to determine systems at a series of linking lengths, and analyse richness and sizes of these systems. At the linking lengths l <= 30 Mpc/h the number of quasar systems is larger than the number of systems detected in random catalogues, and systems themselves have smaller diameters than random systems. The diameters of quasar systems are comparable to the sizes of poor galaxy superclusters in the local Universe, the richest quasar systems have four members. The mean space density of quasar systems is close to the mean space density of local rich superclusters. At intermediate linking lengths (40 <= l <= 70 Mpc/h) the richness and length of quasar systems are similar to those derived from random catalogues. Quasar system diameters are similar to the sizes of rich superclusters and supercluster chains in the local Universe. At the linking length 70 Mpc/h the richest systems of quasars have diameters exceeding 500 Mpc/h. The percolating system which penetrate the whole sample volume appears in quasar sample at smaller linking length than in random samples (85 Mpc/h). Quasar luminosities in systems are not correlated with the system richness. Quasar system catalogues at our web pages http://www.aai.ee/~maret/QSOsystems.html serve as a database to search for superclusters of galaxies and to trace the cosmic web at high redshifts.
Simulations of structure formation in the Universe predict that galaxies are embedded in a cosmic web, where the majority of baryons reside as rarefied and highly ionized gas. This material has been studied for decades in absorption against background sources, but the sparseness of these inherently one-dimensional probes preclude direct constraints on the three-dimensional morphology of the underlying web. Here we report observations of a cosmic web filament in Lyman-alpha emission, discovered during a survey for cosmic gas fluorescently illuminated by bright quasars at z=2.3. With a projected size of approximately 460 physical kpc, the Lyman-alpha emission surrounding the radio-quiet quasar UM287 extends well beyond the virial radius of any plausible associated dark matter halo. The estimated cold gas mass of the nebula from the observed emission is at least ten times larger than what is typically found by cosmological simulations, suggesting that a population of intergalactic gas clumps with sub-kpc sizes may be missing within current numerical models.
We present some preliminary results from a series of extremely large, high-resolution N-body simulations of the formation of early nonlinear structures. We find that the high-z halo mass function is inconsistent with the Sheth-Tormen mass function, which tends to over-estimate the abundance of rare halos. This discrepancy is in rough agreement with previous results based on smaller simulations. We also show that the number density of minihaloes is correlated with local matter density, albeit with a significant scatter that increases with redshift, as minihaloes become increasingly rare. The average correlation is in rough agreement with a simple analytical extended Press-Schechter model, but can differ by up to factor of 2 in some regimes.
113 - F. Vazza , S. Banfi , C. Gheller 2020
We present the first results of a campaign of ENZO cosmological simulations targeting the shocked and the neutral parts of the cosmic web, obtained with Supercomputing facilities provided by the INAF-CINECA agreement.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا