Do you want to publish a course? Click here

Device-to-device Cooperation in Massive MIMO Systems with Cascaded Precoding

138   0   0.0 ( 0 )
 Added by Yinsheng Liu
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

This paper investigates user cooperation in massive multiple-input multiple-output (MIMO) systems with cascaded precoding. The high-dimensional physical channel in massive MIMO systems can be converted into a low-dimensional effective channel through the inner precoder to reduce the overhead of channel estimation and feedback. The inner precoder depends on the spatial covariance matrix of the channels, and thus the same precoder can be used for different users as long as they have the same spatial covariance matrix. Spatial covariance matrix is determined by the surrounding environment of user terminals. Therefore, the users that are close to each other will share the same spatial covariance matrix. In this situation, it is possible to achieve user cooperation by sharing receiver information through some dedicated link, such as device-to-device communications. To reduce the amount of information that needs to be shared, we propose a decoding codebook based scheme, which can achieve user cooperation without the need of channel state information. Moreover, we also investigate the amount of bandwidth required to achieve efficient user cooperation. Simulation results show that user cooperation can improve the capacity compared to the non-cooperation scheme.



rate research

Read More

In this paper, we investigate the coexistence of two technologies that have been put forward for the fifth generation (5G) of cellular networks, namely, network-assisted device-to-device (D2D) communications and massive MIMO (multiple-input multiple-output). Potential benefits of both technologies are known individually, but the tradeoffs resulting from their coexistence have not been adequately addressed. To this end, we assume that D2D users reuse the downlink resources of cellular networks in an underlay fashion. In addition, multiple antennas at the BS are used in order to obtain precoding gains and simultaneously support multiple cellular users using multiuser or massive MIMO technique. Two metrics are considered, namely the average sum rate (ASR) and energy efficiency (EE). We derive tractable and directly computable expressions and study the tradeoffs between the ASR and EE as functions of the number of BS antennas, the number of cellular users and the density of D2D users within a given coverage area. Our results show that both the ASR and EE behave differently in scenarios with low and high density of D2D users, and that coexistence of underlay D2D communications and massive MIMO is mainly beneficial in low densities of D2D users.
In this paper, we investigate the quantization and the feedback of downlink spatial covariance matrix for massive multiple-input multiple-output (MIMO) systems with cascaded precoding. Massive MIMO has gained a lot of attention recently because of its ability to significantly improve the network performance. To reduce the overhead of downlink channel estimation and uplink feedback in frequency-division duplex massive MIMO systems, cascaded precoding has been proposed, where the outer precoder is implemented using traditional limited feedback while the inner precoder is determined by the spatial covariance matrix of the channels. In massive MIMO systems, it is difficult to quantize the spatial covariance matrix because of its large size caused by the huge number of antennas. In this paper, we propose a spatial spectrum based approach for the quantization and the feedback of the spatial covariance matrix. The proposed inner precoder can be viewed as modulated discrete prolate spheroidal sequences and thus achieve much smaller spatial leakage than the traditional discrete Fourier transform submatrix based precoding. Practical issues for the application of the proposed approach are also addressed in this paper.
93 - Shuang Qiu , Da Chen , Daiming Qu 2017
In this paper, the feasibility of a new downlink transmission mode in massive multi-input multi-output (MIMO) systems is investigated with two types of users, i.e., the users with only statistical channel state information (CSI) and the users with imperfect instantaneous CSI. The problem of downlink precoding design with mixed utilization of statistical and imperfect instantaneous CSI is addressed. We first theoretically analyze the impact of the mutual interference between the two types of users on their achievable rate. Then, considering the mutual interference suppression, we propose an extended zero-forcing (eZF) and an extended maximum ratio transmission (eMRT) precoding methods to minimize the total transmit power of base station and to maximize the received signal power of users, respectively. Thanks to the exploitation of statistical CSI, pilot-based channel estimation is avoided enabling more active users, higher system sum rate and shorter transmission delay. Finally, simulations are performed to validate the accuracy of the theoretical analysis and the advantages of the proposed precoding methods.
This paper considers a cache-aided device-to-device (D2D) system where the users are equipped with cache memories of different size. During low traffic hours, a server places content in the users cache memories, knowing that the files requested by the users during peak traffic hours will have to be delivered by D2D transmissions only. The worst-case D2D delivery load is minimized by jointly designing the uncoded cache placement and linear coded D2D delivery. Next, a novel lower bound on the D2D delivery load with uncoded placement is proposed and used in explicitly characterizing the minimum D2D delivery load (MD2DDL) with uncoded placement for several cases of interest. In particular, having characterized the MD2DDL for equal cache sizes, it is shown that the same delivery load can be achieved in the network with users of unequal cache sizes, provided that the smallest cache size is greater than a certain threshold. The MD2DDL is also characterized in the small cache size regime, the large cache size regime, and the three-user case. Comparisons of the server-based delivery load with the D2D delivery load are provided. Finally, connections and mathematical parallels between cache-aided D2D systems and coded distributed computing (CDC) systems are discussed.
This paper studies device to device (D2D) coded-caching with information theoretic security guarantees. A broadcast network consisting of a server, which has a library of files, and end users equipped with cache memories, is considered. Information theoretic security guarantees for confidentiality are imposed upon the files. The server populates the end user caches, after which D2D communications enable the delivery of the requested files. Accordingly, we require that a user must not have access to files it did not request, i.e., secure caching. First, a centralized coded caching scheme is provided by jointly optimizing the cache placement and delivery policies. Next, a decentralized coded caching scheme is developed that does not require the knowledge of the number of active users during the caching phase. Both schemes utilize non-perfect secret sharing and one-time pad keying, to guarantee secure caching. Furthermore, the proposed schemes provide secure delivery as a side benefit, i.e., any external entity which overhears the transmitted signals during the delivery phase cannot obtain any information about the database files. The proposed schemes provide the achievable upper bound on the minimum delivery sum rate. Lower bounds on the required transmission sum rate are also derived using cut-set arguments indicating the multiplicative gap between the lower and upper bounds. Numerical results indicate that the gap vanishes with increasing memory size. Overall, the work demonstrates the effectiveness of D2D communications in cache-aided systems even when confidentiality constraints are imposed at the participating nodes and against external eavesdroppers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا