Do you want to publish a course? Click here

From Poincare Maps to Lagrangian Descriptors: The Case of the Valley Ridge Inflection Point Potential

106   0   0.0 ( 0 )
 Added by Makrina Agaoglou
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we compare the method of Lagrangian descriptors with the classical method of Poincare maps for revealing the phase space structure of two degree-of-freedom Hamiltonian systems. The comparison is carried out by considering the dynamics of a two degree-of-freedom system having a valley ridge inflection point (VRI) potential energy surface. VRI potential energy surfaces have four critical points: a high energy saddle and a lower energy saddle separating two wells. In between the two saddle points is a valley ridge inflection point that is the point where the potential energy surface geometry changes from a valley to a ridge. The region between the two saddles forms a reaction channel and the dynamical issue of interest is how trajectories cross the high energy saddle, evolve towards the lower energy saddle, and select a particular well to enter. Lagrangian descriptors and Poincare maps are compared for their ability to determine the phase space structures that govern this dynamical process.



rate research

Read More

Using analytic properties of Blaschke factors we construct a family of analytic hyperbolic diffeomorphisms of the torus for which the spectral properties of the associated transfer operator acting on a suitable Hilbert space can be computed explicitly. As a result, we obtain explicit expressions for the decay of correlations of analytic observables without resorting to any kind of perturbation argument.
We study reaction dynamics on a model potential energy surface exhibiting post-transition state bifurcation in the vicinity of a valley ridge inflection point. We compute fractional yields of products reached after the VRI region is traversed, both with and without dissipation. It is found that apparently minor variations in the potential lead to significant changes in the reaction dynamics. Moreover, when dissipative effects are incorporated, the product ratio depends in a complicated and highly non-monotonic fashion on the dissipation parameter. Dynamics in the vicinity of the VRI point itself play essentially no role in determining the product ratio, except in the highly dissipative regime.
We study configurations of disjoint Lagrangian submanifolds in certain low-dimensional symplectic manifolds from the perspective of the geometry of Hamiltonian maps. We detect infinite-dimensional flats in the Hamiltonian group of the two-sphere equipped with Hofers metric, prove constraints on Lagrangian packing, find instances of Lagrangian Poincar{e} recurrence, and present a new hierarchy of normal subgroups of area-preserving homeomorphisms of the two-sphere. The technology involves Lagrangian spectral invariants with Hamiltonian term in symmetric product orbifolds.
Complementary to existing applications of Lagrangian descriptors as an exploratory method, we use Lagrangian descriptors to find invariant manifolds in a system where some invariant structures have already been identified. In this case we use the parametrisation of a periodic orbit to construct a Lagrangian descriptor that will be locally minimised on its invariant manifolds. The procedure is applicable (but not limited) to systems with highly unstable periodic orbits, such as the isokinetic Chesnavich CH4+ model subject to a Hamiltonian isokinetic theromostat. Aside from its low computational requirements, the method enables us to study the invariant structures responsible for roaming in the isokinetic Chesnavich CH4+ model.
The collinear hydrogen exchange reaction is a paradigm system for understanding chemical reactions. It is the simplest imaginable atomic system with $2$ degrees of freedom modeling a chemical reaction, yet it exhibits behaviour that is still not well understood - the reaction rate decreases as a function of energy beyond a critical value. Using lobe dynamics we show how invariant manifolds of unstable periodic orbits guide trajectories in phase space. From the structure of the invariant manifolds we deduce that insufficient transfer of energy between the degrees of freedom causes a reaction rate decrease. In physical terms this corresponds to the free hydrogen atom repelling the whole molecule instead of only one atom from the molecule. We further derive upper and lower bounds of the reaction rate, which are desirable for practical reasons.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا