Do you want to publish a course? Click here

Phase space structures causing the reaction rate decrease in the collinear hydrogen exchange reaction

83   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The collinear hydrogen exchange reaction is a paradigm system for understanding chemical reactions. It is the simplest imaginable atomic system with $2$ degrees of freedom modeling a chemical reaction, yet it exhibits behaviour that is still not well understood - the reaction rate decreases as a function of energy beyond a critical value. Using lobe dynamics we show how invariant manifolds of unstable periodic orbits guide trajectories in phase space. From the structure of the invariant manifolds we deduce that insufficient transfer of energy between the degrees of freedom causes a reaction rate decrease. In physical terms this corresponds to the free hydrogen atom repelling the whole molecule instead of only one atom from the molecule. We further derive upper and lower bounds of the reaction rate, which are desirable for practical reasons.



rate research

Read More

Hamiltonian dynamical systems possessing equilibria of ${saddle} times {centre} times...times {centre}$ stability type display emph{reaction-type dynamics} for energies close to the energy of such equilibria; entrance and exit from certain regions of the phase space is only possible via narrow emph{bottlenecks} created by the influence of the equilibrium points. In this paper we provide a thorough pedagogical description of the phase space structures that are responsible for controlling transport in these problems. Of central importance is the existence of a emph{Normally Hyperbolic Invariant Manifold (NHIM)}, whose emph{stable and unstable manifolds} have sufficient dimensionality to act as separatrices, partitioning energy surfaces into regions of qualitatively distinct behavior. This NHIM forms the natural (dynamical) equator of a (spherical) emph{dividing surface} which locally divides an energy surface into two components (`reactants and `products), one on either side of the bottleneck. This dividing surface has all the desired properties sought for in emph{transition state theory} where reaction rates are computed from the flux through a dividing surface. In fact, the dividing surface that we construct is crossed exactly once by reactive trajectories, and not crossed by nonreactive trajectories, and related to these properties, minimizes the flux upon variation of the dividing surface. We discuss three presentations of the energy surface and the phase space structures contained in it for 2-degree-of-freedom (DoF) systems in the threedimensional space $R^3$, and two schematic models which capture many of the essential features of the dynamics for $n$-DoF systems. In addition, we elucidate the structure of the NHIM.
Recently the phase space structures governing reaction dynamics in Hamiltonian systems have been identified and algorithms for their explicit construction have been developed. These phase space structures are induced by saddle type equilibrium points which are characteristic for reaction type dynamics. Their construction is based on a Poincar{e}-Birkhoff normal form. Using tools from the geometric theory of Hamiltonian systems and their reduction we show in this paper how the construction of these phase space structures can be generalized to the case of the relative equilibria of a rotational symmetry reduced $N$-body system. As rotations almost always play an important role in the reaction dynamics of molecules the approach presented in this paper is of great relevance for applications.
Recent studies have found an unusual way of dissociation in formaldehyde. It can be characterized by a hydrogen atom that separates from the molecule, but instead of dissociating immediately it roams around the molecule for a considerable amount of time and extracts another hydrogen atom from the molecule prior to dissociation. This phenomenon has been coined roaming and has since been reported in the dissociation of a number of other molecules. In this paper we investigate roaming in Chesnavichs CH$_4^+$ model. During dissociation the free hydrogen must pass through three phase space bottleneck for the classical motion, that can be shown to exist due to unstable periodic orbits. None of these orbits is associated with saddle points of the potential energy surface and hence related to transition states in the usual sense. We explain how the intricate phase space geometry influences the shape and intersections of invariant manifolds that form separatrices, and establish the impact of these phase space structures on residence times and rotation numbers. Ultimately we use this knowledge to attribute the roaming phenomenon to particular heteroclinic intersections.
Phase space structures such as dividing surfaces, normally hyperbolic invariant manifolds, their stable and unstable manifolds have been an integral part of computing quantitative results such as transition fraction, stability erosion in multi-stable mechanical systems, and reaction rates in chemical reaction dynamics. Thus, methods that can reveal their geometry in high dimensional phase space (4 or more dimensions) need to be benchmarked by comparing with known results. In this study, we assess the capability of one such method called Lagrangian descriptor for revealing the types of high dimensional phase space structures associated with index-1 saddle in Hamiltonian systems. The Lagrangian descriptor based approach is applied to two and three degree-of-freedom quadratic Hamiltonian systems where the high dimensional phase space structures are known, that is as closed-form analytical expressions. This leads to a direct comparison of features in the Lagrangian descriptor plots and the phase space structures intersection with an isoenergetic two-dimensional surface and hence provides a validation of the approach.
111 - Jun Zhong , Shane D. Ross 2021
Escape from a potential well through an index-1 saddle can be widely found in some important physical systems. Knowing the criteria and phase space geometry that govern escape events plays an important role in making use of such phenomenon, particularly when realistic frictional or dissipative forces are present. We aim to extend the study the escape dynamics around the saddle from two degrees of freedom to three degrees of freedom, presenting both a methodology and phase space structures. Both the ideal conservative system and a perturbed, dissipative system are considered. We define the five-dimensional transition region, $mathcal{T}_h$, as the set of initial conditions of a given initial energy $h$ for which the trajectories will escape from one side of the saddle to another. Invariant manifold arguments demonstrate that in the six-dimensional phase space, the boundary of the transition region, $partial mathcal{T}_h$, is topologically a four-dimensional hyper-cylinder in the conservative system, and a four-dimensional hyper-sphere in the dissipative system. The transition region $mathcal{T}_h$ can be constructed by a solid three-dimensional ellipsoid (solid three-dimensional cylinder) in the three-dimensional configuration space, where at each point, there is a cone of velocity -- the velocity directions leading to transition are given by cones, with velocity magnitude given by the initial energy and the direction by two spherical angles with given limits. To illustrate our analysis, we consider an example system which has two potential minima connected by an index 1 saddle.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا