Do you want to publish a course? Click here

Electromagnetic-Polarization Selective Composites with Quasi-1D van der Waals Metallic Fillers

126   0   0.0 ( 0 )
 Added by Alexander Balandin
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the preparation of flexible polymer composite films with aligned metallic fillers comprised of atomic chain bundles of the quasi-one-dimensional (1D) van der Waals material tantalum triselenide, TaSe3. The material functionality, embedded at the nanoscale level, is achieved by mimicking the design of an electromagnetic aperture grid antenna. The processed composites employ chemically exfoliated TaSe3 nanowires as the grid building blocks incorporated within the thin film. Filler alignment is achieved using the blade coating method. Measurements conducted in the X-band frequency range demonstrate that the electromagnetic transmission through such films can be varied significantly by changing the relative orientations of the quasi-1D fillers and the polarization of the electromagnetic wave. We argue that such polarization-sensitive polymer films with quasi-1D fillers are applicable to advanced electromagnetic interference shielding in future communication systems.



rate research

Read More

We report polymer composite films containing fillers comprised of quasi-one-dimensional (1D) van der Waals materials, specifically transition metal trichalcogenides containing 1D structural motifs that enable their exfoliation into bundles of atomic threads. These nanostructures are characterized by extremely large aspect ratios of up to 10^6. The polymer composites with low loadings of quasi-1D TaSe3 fillers (below 3 vol. %) revealed excellent electromagnetic interference shielding in the X-band GHz and EHF sub-THz frequency ranges, while remaining DC electrically insulating. The unique electromagnetic shielding characteristics of these films are attributed to effective coupling of the electromagnetic waves to the high-aspect-ratio electrically-conductive TaSe3 atomic-thread bundles even when the filler concentration is below the electrical percolation threshold. These novel films are promising for high-frequency communication technologies, which require electromagnetic shielding films that are flexible, lightweight, corrosion resistant, electrically insulating and inexpensive.
141 - Wenyu Xing , Luyi Qiu , Xirui Wang 2019
The recent emergence of 2D van der Waals magnets down to atomic layer thickness provides an exciting platform for exploring quantum magnetism and spintronics applications. The van der Waals nature stabilizes the long-range ferromagnetic order as a result of magnetic anisotropy. Furthermore, giant tunneling magnetoresistance and electrical control of magnetism have been reported. However, the potential of 2D van der Waals magnets for magnonics, magnon-based spintronics, has not been explored yet. Here, we report the experimental observation of long-distance magnon transport in quasi-twodimensional van der Waals antiferromagnet MnPS3, which demonstrates the 2D magnets as promising material candidates for magnonics. As the 2D MnPS3 thickness decreases, a shorter magnon diffusion length is observed, which could be attributed to the surface-impurity-induced magnon scattering. Our results could pave the way for exploring quantum magnonics phenomena and designing future magnonics devices based on 2D van der Waals magnets.
We have synthesized unique colloidal nanoplatelets of the ferromagnetic two-dimensional (2D) van der Waals material CrI3 and have characterized these nanoplatelets structurally, magnetically, and by magnetic circular dichroism spectroscopy. The isolated CrI3 nanoplatelets have lateral dimensions of ~25 nm and ensemble thicknesses of only ~4 nm, corresponding to just a few CrI3 monolayers. Magnetic and magneto-optical measurements demonstrate robust 2D ferromagnetic ordering in these nanoplatelets with Curie temperatures similar to those observed in bulk CrI3, despite the strong spatial confinement. These data also show magnetization steps akin to those observed in micron-sized few-layer 2D sheets and associated with concerted spin-reversal of individual CrI3 layers within few-layer van der Waals stacks. Similar data have also been obtained for CrBr3 and anion-alloyed Cr(I1-xBrx)3 nanoplatelets. These results represent the first example of laterally confined 2D van der Waals ferromagnets of any composition. The demonstration of robust ferromagnetism at nanometer lateral dimensions opens new doors for miniaturization in spintronics devices based on van der Waals ferromagnets.
With the advanced investigations into low-dimensional systems, it has become essential to find materials having interesting lattices that can be exfoliated down to monolayer. One particular important structure is a kagome lattice with its potentially diverse and vibrant physics. We report a van-der-Waals kagome lattice material, Pd3P2S8, with several unique properties such as an intriguing flat band. The flat band is shown to arise from a possible compact-localized state of all five 4d orbitals of Pd. The diamagnetic susceptibility is precisely measured to support the calculated susceptibility obtained from the band structure. We further demonstrate that Pd3P2S8 can be exfoliated down to monolayer, which ultimately will allow the possible control of the localized states in this two-dimensional kagome lattice using the electric field gating.
The properties of metal-semiconductor junctions are often unpredictable because of non-ideal interfacial structures, such as interfacial defects or chemical reactions introduced at junctions. Black phosphorus (BP), an elemental two-dimensional (2D) semiconducting crystal, possesses the puckered atomic structure with high chemical reactivity, and the establishment of a realistic atomic-scale picture of BPs interface toward metallic contact has remained elusive. Here we examine the interfacial structures and properties of physically-deposited metals of various kinds on BP. We find that Au, Ag, and Bi form single-crystalline films with (110) orientation through guided van der Waals epitaxy. Transmission electron microscopy and X-ray photoelectron spectroscopy confirm that atomically sharp van der Waals metal-BP interfaces forms with exceptional rotational alignment. Under a weak metal-BP interaction regime, the BPs puckered structure play an essential role in the adatom assembly process and can lead to the formation of a single crystal, which is supported by our theoretical analysis and calculations. The experimental survey also demonstrates that the BP-metal junctions can exhibit various types of interfacial structures depending on metals, such as the formation of polycrystalline microstructure or metal phosphides. This study provides a guideline for obtaining a realistic view on metal-2D semiconductor interfacial structures, especially for atomically puckered 2D crystals.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا