Do you want to publish a course? Click here

Wake Word Detection with Streaming Transformers

82   0   0.0 ( 0 )
 Added by Yiming Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Modern wake word detection systems usually rely on neural networks for acoustic modeling. Transformers has recently shown superior performance over LSTM and convolutional networks in various sequence modeling tasks with their better temporal modeling power. However it is not clear whether this advantage still holds for short-range temporal modeling like wake word detection. Besides, the vanilla Transformer is not directly applicable to the task due to its non-streaming nature and the quadratic time and space complexity. In this paper we explore the performance of several variants of chunk-wise streaming Transformers tailored for wake word detection in a recently proposed LF-MMI system, including looking-ahead to the next chunk, gradient stopping, different positional embedding methods and adding same-layer dependency between chunks. Our experiments on the Mobvoi wake word dataset demonstrate that our proposed Transformer model outperforms the baseline convolution network by 25% on average in false rejection rate at the same false alarm rate with a comparable model size, while still maintaining linear complexity w.r.t. the sequence length.



rate research

Read More

293 - Yan Jia , Zexin Cai , Murong Ma 2020
Confusing-words are commonly encountered in real-life keyword spotting applications, which causes severe degradation of performance due to complex spoken terms and various kinds of words that sound similar to the predefined keywords. To enhance the wake word detection systems robustness on such scenarios, we investigate two data augmentation setups for training end-to-end KWS systems. One is involving the synthesized data from a multi-speaker speech synthesis system, and the other augmentation is performed by adding random noise to the acoustic feature. Experimental results show that augmentations help improve the systems robustness. Moreover, by augmenting the training set with the synthetic data generated by the multi-speaker text-to-speech system, we achieve a significant improvement regarding confusing words scenario.
Streaming end-to-end automatic speech recognition (ASR) systems are widely used in everyday applications that require transcribing speech to text in real-time. Their minimal latency makes them suitable for such tasks. Unlike their non-streaming counterparts, streaming models are constrained to be causal with no future context and suffer from higher word error rates (WER). To improve streaming models, a recent study [1] proposed to distill a non-streaming teacher model on unsupervised utterances, and then train a streaming student using the teachers predictions. However, the performance gap between teacher and student WERs remains high. In this paper, we aim to close this gap by using a diversified set of non-streaming teacher models and combining them using Recognizer Output Voting Error Reduction (ROVER). In particular, we show that, despite being weaker than RNN-T models, CTC models are remarkable teachers. Further, by fusing RNN-T and CTC models together, we build the strongest teachers. The resulting student models drastically improve upon streaming models of previous work [1]: the WER decreases by 41% on Spanish, 27% on Portuguese, and 13% on French.
In this paper, we investigate the benefit that off-the-shelf word embedding can bring to the sequence-to-sequence (seq-to-seq) automatic speech recognition (ASR). We first introduced the word embedding regularization by maximizing the cosine similarity between a transformed decoder feature and the target word embedding. Based on the regularized decoder, we further proposed the fused decoding mechanism. This allows the decoder to consider the semantic consistency during decoding by absorbing the information carried by the transformed decoder feature, which is learned to be close to the target word embedding. Initial results on LibriSpeech demonstrated that pre-trained word embedding can significantly lower ASR recognition error with a negligible cost, and the choice of word embedding algorithms among Skip-gram, CBOW and BERT is important.
End-to-end acoustic-to-word speech recognition models have recently gained popularity because they are easy to train, scale well to large amounts of training data, and do not require a lexicon. In addition, word models may also be easier to integrate with downstream tasks such as spoken language understanding, because inference (search) is much simplified compared to phoneme, character or any other sort of sub-word units. In this paper, we describe methods to construct contextual acoustic word embeddings directly from a supervised sequence-to-sequence acoustic-to-word speech recognition model using the learned attention distribution. On a suite of 16 standard sentence evaluation tasks, our embeddings show competitive performance against a word2vec model trained on the speech transcriptions. In addition, we evaluate these embeddings on a spoken language understanding task, and observe that our embeddings match the performance of text-based embeddings in a pipeline of first performing speech recognition and then constructing word embeddings from transcriptions.
127 - Zhiyuan Guo , Yuexin Li , Guo Chen 2021
Spoken dialogue systems such as Siri and Alexa provide great convenience to peoples everyday life. However, current spoken language understanding (SLU) pipelines largely depend on automatic speech recognition (ASR) modules, which require a large amount of language-specific training data. In this paper, we propose a Transformer-based SLU system that works directly on phones. This acoustic-based SLU system consists of only two blocks and does not require the presence of ASR module. The first block is a universal phone recognition system, and the second block is a Transformer-based language model for phones. We verify the effectiveness of the system on an intent classification dataset in Mandarin Chinese.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا